[1] |
杨洁, 黄沈发. 污染场地环境监管的上海路径[J]. 环境经济, 2016(17): 28-31.
|
[2] |
HOU D, GUTHRIE P, RIGBY M. Assessing the trend in sustainable remediation: A questionnaire survey of remediation professionals in various countries[J]. Environmental Management, 2016, 184: 18-26.
|
[3] |
SONG Y, HOU D, ZHANG J, et al. Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China[J]. Sicence of the Total Environment, 2018, 610-611: 391-401. doi: 10.1016/j.scitotenv.2017.08.016
|
[4] |
DING D, SONG X, WEI C, et al. A review on the sustainability of thermal treatment for contaminated soils[J]. Environmental Pollution, 2019, 253: 449-463. doi: 10.1016/j.envpol.2019.06.118
|
[5] |
VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation[J]. Engineering, 2016, 2: 426-437. doi: 10.1016/J.ENG.2016.04.005
|
[6] |
ARESTA M, DIBENEDETTO A, FRAGALE C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts[J]. Chemosphere, 2008, 70(6): 1052-1058.
|
[7] |
缪周伟, 吕树光, 邱兆富,等. 原位热处理技术修复重质非水相液体污染场地研究进展[J]. 环境污染与防治, 2012, 34(8): 63-68. doi: 10.3969/j.issn.1001-3865.2012.08.014
|
[8] |
刘惠. 污染土壤热脱附技术的应用与发展趋势[J]. 环境与可持续发展, 2019, 44(4): 144-148.
|
[9] |
ZHAO C, DONG Y, FENG Y, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079
|
[10] |
SUN H, QIN X, YANG X, et al. Study on the heat transfer in different aquifer media with different groundwater velocities during thermal conductive heating[J]. Environmental Science Pollution Research International, 2020, 27: 36316-36329. doi: 10.1007/s11356-020-09131-2
|
[11] |
BASTON D P, KUEPER B H. Thermal conductive heating in fractured bedrock: Screening calculations to assess the effect of groundwater influx[J]. Advances in Water Resources, 2009, 32: 231-238. doi: 10.1016/j.advwatres.2008.10.019
|
[12] |
迟克宇, 李传维, 籍龙杰,等. 原位电热脱附技术在某有机污染场地修复中的应用效果[J]. 环境工程学报, 2019, 13(9): 2049-2059. doi: 10.12030/j.cjee.201905110
|
[13] |
ZHAO C, MUMFORD K G, KUEPER B H. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment[J]. Journal of Contaminant Hydrology, 2014, 164: 49-58. doi: 10.1016/j.jconhyd.2014.05.008
|
[14] |
HICKNELL B N, MUMFORD K G, KUEPER B H. Laboratory study of creosote removal from sand at elevated temperatures[J]. Journal of Contaminant Hydrology, 2018, 219: 40-49. doi: 10.1016/j.jconhyd.2018.10.006
|
[15] |
XIE Q, MUMFORD K G, KUEPER B H, et al. A numerical model for estimating the removal of volatile organic compounds in laboratory-scale treatability tests for thermal treatment of NAPL-impacted soils[J]. Journal of Contaminant Hydrology, 2019, 226: 103526. doi: 10.1016/j.jconhyd.2019.103526
|
[16] |
XU H J, LI Y Z, GAO L J, et al. Planned heating control strategy and thermodynamic modeling of a natural gas thermal desorption system for contaminated soil[J]. Energies, 2020, 13(3): 642. doi: 10.3390/en13030642
|
[17] |
韩伟, 叶渊, 焦文涛,等. 污染场地修复中原位热脱附技术与其他相关技术耦合联用的意义、效果及展望[J]. 环境工程学报, 2019, 13(10): 2302-2310. doi: 10.12030/j.cjee.201906019
|
[18] |
XIE Q, MUMFORD K G, KUEPER B H. Modelling gas-phase recovery of volatile organic compounds during in situ thermal treatment[J]. Journal of Contaminant Hydrology, 2020, 234: 103698. doi: 10.1016/j.jconhyd.2020.103698
|
[19] |
DAVIS R J, LILJESTRAND H M, KATZ L E. Evidence for multiple removal pathways in low-temperature (200-400 °C) thermal treatment of pentachlorophenol-laden soils[J]. Journal of Hazardous Materials, 2020, 400: 122870. doi: 10.1016/j.jhazmat.2020.122870
|
[20] |
YU Y, LIU L, YANG C, et al. Removal kinetics of petroleum hydrocarbons from low-permeable soil by sand mixing and thermal enhancement of soil vapor extraction[J]. Chemosphere, 2019, 236: 124319. doi: 10.1016/j.chemosphere.2019.07.050
|
[21] |
杨玉洁, 王春雨, 沙雪华,等. 烃类污染土壤热强化气相抽提技术的脱附动力学[J]. 环境工程学报, 2019, 13(10): 2328-2335. doi: 10.12030/j.cjee.201905119
|
[22] |
孙袭明. 有机污染土壤热脱附技术的影响因素研究及模拟系统开发[D]. 天津: 天津大学, 2018.
|
[23] |
付建英, 徐化, 余权等. 原位热脱附修复污染土壤加热效果模拟和试验研究[J]. 能源工程, 2021(1): 70-73.
|
[24] |
於仲义, 胡平放, 袁旭东. 土壤源热泵地埋管换热器传热机制研究[J]. 煤气与热力, 2008, 28(12): 7-11. doi: 10.3969/j.issn.1000-4416.2008.12.003
|
[25] |
TOSUN I. Antoine Constants. In: The Thermodynamics of Phase and Reaction Equilibria[M]. Elsevier: the United Stastes, 2013: 667-669
|
[26] |
熊樱, 蔡云, 王永敏,等. 原位燃气热脱附技术在有机污染土壤修复工程的应用[J]. 化工管理, 2020(31): 87-90. doi: 10.3969/j.issn.1008-4800.2020.31.043
|
[27] |
WANG W, LI C, LI Y Z, et al. Numerical analysis of heat transfer performance of in situ thermal remediation of large polluted soil areas[J]. Energies, 2019, 12(24): 4622. doi: 10.3390/en12244622
|
[28] |
VINEGAR H J, BONN M M. In situ thermal desorption (ISTD) of PCBs[C]//U.S. Department of Energy. Hazwaste World, Superfund XVIII. Washington,1997.
|
[29] |
王锦淮. 原位热脱附技术在某有机污染场地修复中试应用[J]. 化学世界, 2018, 59(3): 182-186.
|
[30] |
LI C, CLEALL P J, MAO J, et al. Numerical simulation of ground source heat pump systems considering unsaturated soil properties and groundwater flow[J]. Applied Thermal Engineering, 2018, 139: 307-316. doi: 10.1016/j.applthermaleng.2018.04.142
|
[31] |
CAO D, SHI B, LOHEIDE S P, et al. Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A-DTS) technology[J]. Energy Buildings, 2018, 173: 239-251. doi: 10.1016/j.enbuild.2018.01.022
|