[1] 中华人民共和国国家统计局. 2020年中国统计年鉴[M]. 北京: 中国统计出版社, 2020.
[2] MATILAINEN A, VEPSÄLÄINEN M, SILLANPÄÄ M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197. doi: 10.1016/j.cis.2010.06.007
[3] PIKAAR I, SHARMA K R, HU S, et al. Reducing sewer corrosion through integrated urban water management[J]. Science, 2014, 345(6198): 812-814. doi: 10.1126/science.1251418
[4] SHARMA K R, YUAN Z, DE HAAS D, et al. Dynamics and dynamic modelling of H2S production in sewer systems[J]. Water Research, 2008, 42(10/11): 2527-2538.
[5] GUISASOLA A, DE HAAS D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430.
[6] LIU Y, SHARMA K R, NI B, et al. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment[J]. Water Research, 2015, 74: 155-165. doi: 10.1016/j.watres.2015.02.017
[7] AI T, HE Q, XU J, et al. A conceptual method to simultaneously inhibit methane and hydrogen sulfide production in sewers: The carbon metabolic pathway and microbial community shift[J]. Journal of Environmental Management, 2019, 246: 119-127.
[8] WIENER M S, SALAS B V, QUINTERO-NÚÑEZ M, et al. Effect of H2S on corrosion in polluted waters: A review[J]. Corrosion Engineering, Science, and Technology, 2006, 41(3): 221-227. doi: 10.1179/174327806X132204
[9] ZHANG L, DE SCHRYVER P, DE GUSSEME B, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review[J]. Water Research, 2008, 42(1/2): 1-12.
[10] YOUSEFI A, ALLAHVERDI A, HEJAZI P. Accelerated biodegradation of cured cement paste by Thiobacillus species under simulation condition[J]. International Biodeterioration & Biodegradation, 2014, 86: 317-326.
[11] HVITVED-JACOBSEN T, VOLLERTSEN J, NIELSEN A H. Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks[M]. Los Angeles: CRC Press, 2013.
[12] JIANG G, SUN J, SHARMA K R, et al. Corrosion and odor management in sewer systems[J]. Current Opinion in Biotechnology, 2015, 37(4): 33.
[13] EPA. Hydrogen Sulfide Corrosion in Wastewater Collection and Treatment Systems[M]. Washington, DC: U. S. Environmental Protection Agency, 1991.
[14] FIRER D, FRIEDLER E, LAHAV O. Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications[J]. Science of the Total Environment, 2008, 392(1): 145-156. doi: 10.1016/j.scitotenv.2007.11.008
[15] 季斌, 秦慧, 陈威, 等. 铁盐应用于污水协同除磷研究进展[J]. 水处理技术, 2018, 44(2): 11-14.
[16] LI R, WANG W, LI B, et al. Acidogenic phosphorus recovery from the wastewater sludge of the membrane bioreactor systems with different iron-dosing modes[J]. Bioresource Technology, 2019, 280: 360-370. doi: 10.1016/j.biortech.2019.02.060
[17] 董建威, 何强, 司马卫平. 含盐废水生物/化学除磷模型及除磷剂的强化效果[J]. 中国给水排水, 2014, 30(21): 106-109.
[18] CHARLES W, CORD-RUWISCH R, HO G, et al. Solutions to a combined problem of excessive hydrogen sulfide in biogas and struvite scaling[J]. Water Science and Technology, 2006, 53(6): 203-211. doi: 10.2166/wst.2006.198
[19] BABATUNDE A O, ZHAO Y Q. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses[J]. Critical Reviews in Environmental Science and Technology, 2007, 37(2): 129-164. doi: 10.1080/10643380600776239
[20] SUN J, PIKAAR I, SHARMA K R, et al. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge[J]. Water Research, 2015, 71: 150-159. doi: 10.1016/j.watres.2014.12.044
[21] WANG B, SIVRET E C, PARCSI G, et al. Reduced sulfur compounds in the atmosphere of sewer networks in Australia: Geographic (and seasonal) variations[J]. Water Science and Technology, 2014, 69(6): 1167-1173. doi: 10.2166/wst.2013.798
[22] PARK K, LEE H, PHELAN S, et al. Mitigation strategies of hydrogen sulphide emission in sewer networks: A review[J]. International Biodeterioration & Biodegradation, 2014, 95: 251-261.
[23] HVITVED-JACOBSEN T, VOLLERTSEN J, MATOS J S. The sewer as a bioreactor: A dry weather approach[J]. Water Science and Technology, 2002, 45(3): 11-24.
[24] PADIVAL N A, WEISS J S, ARNOLD R G. Control of Thiobacillus by means of microbial competition: Implications for corrosion of concrete sewers[J]. Water Environment Research, 1995, 67(2): 201-205. doi: 10.2175/106143095X131358
[25] NIELSEN A H, HVITVED-JACOBSEN T, VOLLERTSEN J. Kinetics and stoichiometry of sulfide oxidation by sewer biofilms[J]. Water Research, 2005, 39(17): 4119-4125. doi: 10.1016/j.watres.2005.07.031
[26] SUN J, HU S, SHARMA K R, et al. Stratified microbial structure and activity in sulfide-and methane-producing anaerobic sewer biofilms[J]. Applied and Environmental Microbiology, 2014, 80(22): 7042-7052. doi: 10.1128/AEM.02146-14
[27] BACHE D H, PAPAVASILOPOULOS E N. Viscous behaviour of sludge centrate in response to polymer conditioning[J]. Water Research, 2000, 34(1): 354-358. doi: 10.1016/S0043-1354(99)00143-8
[28] CHURCHILL P, ELMER D. Hydrogen sulfide odor control in wastewater collection systems[J]. Journal of New England Water Environment Association, 1999, 33(1): 57-63.
[29] YANG W, VOLLERTSEN J, HVITVED-JACOBSEN T. Anoxic sulfide oxidation in wastewater of sewer networks[J]. Water Science and Technology, 2005, 52(3): 191. doi: 10.2166/wst.2005.0076
[30] GADEKAR S, NEMATI M, HILL G A. Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: Reaction kinetics and stoichiometry[J]. Water Research, 2006, 40(12): 2436-2446. doi: 10.1016/j.watres.2006.04.007
[31] NIELSEN A H, VOLLERTSEN J, HVITVED-JACOBSEN T. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks[J]. Environmental Science & Technology, 2003, 37(17): 3853-3858.
[32] GUTIERREZ O, MOHANAKRISHNAN J, SHARMA K R, et al. Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system[J]. Water Research, 2008, 42(17): 4549-4561. doi: 10.1016/j.watres.2008.07.042
[33] GANIGUE R, GUTIERREZ O, ROOTSEY R, et al. Chemical dosing for sulfide control in Australia: An industry survey[J]. Water Research, 2011, 45(19): 6564-6574. doi: 10.1016/j.watres.2011.09.054
[34] GUTIERREZ O, PARK D, SHARMA K R, et al. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J]. Water Research, 2009, 43(9): 2549-2557. doi: 10.1016/j.watres.2009.03.008
[35] NIELSEN A H, LENS P, VOLLERTSEN J, et al. Sulfide-iron interactions in domestic wastewater from a gravity sewer[J]. Water Research, 2005, 39(12): 2747-2755. doi: 10.1016/j.watres.2005.04.048
[36] NIELSEN A H, HVITVED-JACOBSEN T, VOLLERTSEN J. Effects of pH and iron concentrations on sulfide precipitation in wastewater collection systems[J]. Water Environment Research, 2008, 80(4): 380-384. doi: 10.2175/106143007X221328
[37] ZHANG L, VERSTRAETE W, DE LOURDES MENDOZA M, et al. Decrease of dissolved sulfide in sewage by powdered natural magnetite and hematite[J]. Science of the Total Environment, 2016, 573: 1070-1078. doi: 10.1016/j.scitotenv.2016.08.206
[38] ZHANG L, KELLER J, YUAN Z. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J]. Water Research, 2009, 43(17): 4123-4132. doi: 10.1016/j.watres.2009.06.013
[39] ZHANG L, KELLER J, YUAN Z. Ferrous salt demand for sulfide control in rising main sewers: Tests on a laboratory-scale sewer system[J]. Journal of Environmental Engineering, 2010, 136(10): 1180-1187. doi: 10.1061/(ASCE)EE.1943-7870.0000258
[40] ZHANG L, DERLON N, KELLER J, et al. Dynamic response of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms to ferric dosing[J]. Journal of Environmental Engineering, 2012, 138(4): 510-517. doi: 10.1061/(ASCE)EE.1943-7870.0000481
[41] LIN H, KUSTERMANS C, VAIOPOULOU E, et al. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers[J]. Water Research, 2017, 118: 114-120. doi: 10.1016/j.watres.2017.02.069
[42] PIKAAR I, FLUGEN M, LIN H, et al. Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control[J]. Water Research, 2019, 167: 115032. doi: 10.1016/j.watres.2019.115032
[43] YAN X, SUN J, KENJIAHAN A, et al. Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms[J]. Water Research, 2020, 169: 115208. doi: 10.1016/j.watres.2019.115208
[44] KULANDAIVELU J, CHOI P M, SHRESTHA S, et al. Assessing the removal of organic micropollutants from wastewater by discharging drinking water sludge to sewers[J]. Water Research, 2020, 181: 115945. doi: 10.1016/j.watres.2020.115945
[45] KULANDAIVELU J, GAO J, SONG Y, et al. Removal of pharmaceuticals and illicit drugs from wastewater due to ferric dosing in sewers[J]. Environmental Science & Technology, 2019, 53(11): 6245-6254.
[46] GUTIERREZ O, PARK D, SHARMA K R, et al. Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment[J]. Water Research, 2010, 44(11): 3467-3475. doi: 10.1016/j.watres.2010.03.023
[47] GE H, ZHANG L, BATSTONE D J, et al. Impact of iron salt dosage to sewers on downstream anaerobic sludge digesters: Sulfide control and methane production[J]. Journal of Environmental Engineering, 2013, 139(4): 594-601. doi: 10.1061/(ASCE)EE.1943-7870.0000650
[48] SCHIPPERS A, JRGENSEN B B. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments[J]. Geochimica Et Cosmochimica Acta, 2002, 66(1): 85-92. doi: 10.1016/S0016-7037(01)00745-1
[49] LUEDECKE C, HERMANOWICZ S W, JENKINS D. Precipitation of ferric phosphate in activated sludge: A chemical model and its verification[J]. Water Pollution Research & Control Brighton, 1988, 21(4/5): 325-337.
[50] REBOSURA M, SALEHIN S, PIKAAR I, et al. A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes[J]. Water Research, 2018, 146: 109-117. doi: 10.1016/j.watres.2018.09.021
[51] REBOSURA M, SALEHIN S, PIKAAR I, et al. Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems[J]. Water Research, 2020, 171: 115396. doi: 10.1016/j.watres.2019.115396
[52] SALEHIN S, KULANDAIVELU J, REBOSURA M, et al. Opportunities for reducing coagulants usage in urban water management: The oxley creek sewage collection and treatment system as an example[J]. Water Research, 2019, 165: 114996. doi: 10.1016/j.watres.2019.114996
[53] KULANDAIVELU J, SHRESTHA S, KHAN W, et al. Full-scale investigation of ferrous dosing in sewers and a wastewater treatment plant for multiple benefits[J]. Chemosphere, 2020, 250: 126221. doi: 10.1016/j.chemosphere.2020.126221
[54] WILFERT P, MANDALIDIS A, DUGULAN A I, et al. Vivianite as an important iron phosphate precipitate in sewage treatment plants[J]. Water Research, 2016, 104: 449-460. doi: 10.1016/j.watres.2016.08.032
[55] WILFERT P, DUGULAN A I, GOUBITZ K, et al. Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery[J]. Water Research, 2018, 144: 312-321. doi: 10.1016/j.watres.2018.07.020
[56] SALEHIN S, REBOSURA M, KELLER J, et al. Recovery of in-sewer dosed iron from digested sludge at downstream treatment plants and its reuse potential[J]. Water Research, 2020, 174: 115627. doi: 10.1016/j.watres.2020.115627
[57] CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. doi: 10.1016/j.biortech.2007.01.057
[58] WU Y, LUO J, ZHANG Q, et al. Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review[J]. Chemosphere, 2019, 226: 246-258. doi: 10.1016/j.chemosphere.2019.03.138
[59] FREDERICHS T, VON DOBENECK T, BLEIL U, et al. Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(16/17/18/19): 669-679.
[60] REBOSURA M, SALEHIN S, PIKAAR I, et al. The impact of primary sedimentation on the use of iron-rich drinking water sludge on the urban wastewater system[J]. Journal of Hazardous Materials, 2021, 402(2): 124051.
[61] GANIGUÉ R, JIANG G, LIU Y, et al. Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing[J]. Water Research, 2018, 135: 302-310. doi: 10.1016/j.watres.2018.02.022