[1] |
CHAKRABORTI D, RAHMAN M M, DAS B, et al. Groundwater arsenic contamination and its health effects in India[J]. Hydrogeology Journal, 2017, 25(4): 1165-1181. doi: 10.1007/s10040-017-1556-6
|
[2] |
GILHOTRA V, DAS L, SHARMA A, et al. Electrocoagulation technology for high strength arsenic wastewater: Process optimization and mechanistic study[J]. Journal of Cleaner Production, 2018, 198: 693-703. doi: 10.1016/j.jclepro.2018.07.023
|
[3] |
UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151: 326-342.
|
[4] |
NEPPOLIAN B, DORONILA A, ASHOKKUMAR M. Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent[J]. Water Research, 2010, 44(12): 3687-3695. doi: 10.1016/j.watres.2010.04.003
|
[5] |
彭映林, 肖斌. 两级中和-铁盐沉淀法处理高砷废水[J]. 工业水处理, 2016, 36(6): 64-68. doi: 10.11894/1005-829x.2016.36(6).016
|
[6] |
CUI J, JING C, CHE D, et al. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study[J]. Journal Environmental Science (China), 2015, 32: 42-53. doi: 10.1016/j.jes.2014.10.020
|
[7] |
BORA A J, GOGOI S, BARUAH G, et al. Utilization of co-existing iron in arsenic removal from groundwater by oxidation-coagulation at optimized pH[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2683-2691. doi: 10.1016/j.jece.2016.05.012
|
[8] |
CAO C Y, QU J, YAN W S, et al. Low-cost synthesis of flowerlike alpha-Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism[J]. Langmuir, 2012, 28(9): 4573-4579. doi: 10.1021/la300097y
|
[9] |
LI W G, GONG X J, WANG K, et al. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon[J]. Bioresource Technology, 2014, 165: 166-173. doi: 10.1016/j.biortech.2014.02.069
|
[10] |
LEE C G, ALVAREZ P J J, NAM A, et al. Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies[J]. Journal of Hazardous Materials, 2017, 325: 223-229. doi: 10.1016/j.jhazmat.2016.12.003
|
[11] |
AN B, LIANG Q, ZHAO D. Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles[J]. Water Research, 2011, 45(5): 1961-1972. doi: 10.1016/j.watres.2011.01.004
|
[12] |
MOHAPATRA B, SARKAR A, JOSHI S, et al. An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater[J]. Archives of Microbiology, 2016, 199(2): 191-201.
|
[13] |
HUANG A, TEPLITSKI M, RATHINASABAPATHI B, et al. Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata[J]. Canadian Journal of Microbiology, 2010, 56(3): 236-246. doi: 10.1139/W10-005
|
[14] |
LI L, VAN GENUCHTEN C M, ADDY S E, et al. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater[J]. Environmental Science & Technology, 2012, 46(21): 12038-12045.
|
[15] |
QIAN A, YUAN S, ZHANG P, et al. A new mechanism in electrochemical process for arsenic oxidation: Production of H2O2 from anodic O2 reduction on the cathode under automatically developed alkaline conditions[J]. Environmental Science & Technology, 2015, 49(9): 5689-5696.
|
[16] |
GUDE J C J, RIETVELD L C, VAN HALEM D. As(III) oxidation by MnO2 during groundwater treatment[J]. Water Research, 2017, 111: 41-51. doi: 10.1016/j.watres.2016.12.041
|
[17] |
SORLINI S, GIALDINI F. Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine[J]. Water Research, 2010, 44(19): 5653-5659. doi: 10.1016/j.watres.2010.06.032
|
[18] |
吕杰婵, 窦远明, 孙猛, 等. 感应电芬顿降解二甲基砷的效果与机理研究[J]. 环境科学学报, 2017, 37(6): 2152-2157.
|
[19] |
LAN H, LI J, SUN M, et al. Efficient conversion of dimethylarsinate into arsenic and its simultaneous adsorption removal over FeCx/N-doped carbon fiber composite in an electro-Fenton process[J]. Water Research, 2016, 100: 57-64. doi: 10.1016/j.watres.2016.05.018
|
[20] |
ZHANG A Y, HUANG N H, ZHANG C, et al. Heterogeneous Fenton decontamination of organoarsenicals and simultaneous adsorption of released arsenic with reduced secondary pollution[J]. Chemical Engineering Journal, 2018, 344: 1-11. doi: 10.1016/j.cej.2018.03.072
|
[21] |
张煜, 李明玉, 李善得, 等. 直接分光光度法测定高铁酸盐的含量[J]. 无机盐工业, 2011, 43(2): 59-62. doi: 10.3969/j.issn.1006-4990.2011.02.020
|
[22] |
ZHU R, YANG C, ZHOU M, et al. Industrial park wastewater deeply treated and reused by a novel electrochemical oxidation reactor[J]. Chemical Engineering Journal, 2015, 260: 427-433. doi: 10.1016/j.cej.2014.09.029
|
[23] |
REN G, ZHOU M, LIU M, et al. A novel vertical-flow electro-Fenton reactor for organic wastewater treatment[J]. Chemical Engineering Journal, 2016, 298: 55-67. doi: 10.1016/j.cej.2016.04.011
|
[24] |
ÖZCAN A, ATILIR ÖZCAN A, DEMIRCI Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment[J]. Chemical Engineering Journal, 2016, 304: 518-526. doi: 10.1016/j.cej.2016.06.105
|
[25] |
ZHOU W, RAJIC L, CHEN L, et al. Activated carbon as effective cathode material in iron-free electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption[J]. Electrochim Acta, 2019, 296: 317-326. doi: 10.1016/j.electacta.2018.11.052
|
[26] |
GAO G, ZHANG Q, HAO Z, et al. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J]. Environmental Science & Technology, 2015, 49(4): 2375-2383.
|
[27] |
LI Z, SHEN C, LIU Y, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton[J]. Applied Catalysis B: Environmental, 2020, 260: 118204.
|
[28] |
MCBEATH S T, GRAHAM N J D. Simultaneous electrochemical oxidation and ferrate generation for the treatment of atrazine: A novel process for water treatment applications[J]. Journal of Hazardous Materials, 2021, 411: 125167. doi: 10.1016/j.jhazmat.2021.125167
|
[29] |
HE H, ZHOU Z. Electro-Fenton process for water and wastewater treatment[J]. Critical Reviews in Environmental Science & Technology, 2017, 47(21): 2100-2131.
|
[30] |
GUAN W, ZHANG B, TIAN S, et al. The synergism between electro-Fenton and electrocoagulation process to remove Cu-EDTA[J]. Applied Catalysis B: Environmental, 2018, 227: 252-257. doi: 10.1016/j.apcatb.2017.12.036
|
[31] |
ZHANG Y, ZUO S, ZHOU M, et al. Removal of tetracycline by coupling of flow-through electro-Fenton and in-situ regenerative active carbon felt adsorption[J]. Chemical Engineering Journal, 2018, 335: 685-692. doi: 10.1016/j.cej.2017.11.012
|
[32] |
SANTANA-MARTÍNEZ G, ROA-MORALES G, MARTIN DEL CAMPO E, et al. Electro-Fenton and electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta, 2016, 195: 246-256. doi: 10.1016/j.electacta.2016.02.093
|
[33] |
ZHANG H, WAN X, LI G, et al. A Three-electrode electro-Fenton system supplied by self-generated oxygen with automatic pH-regulation for groundwater remediation[J]. Electrochimica Acta, 2017, 250: 42-48. doi: 10.1016/j.electacta.2017.08.040
|
[34] |
LI X, JIN X, ZHAO N, et al. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell[J]. Bioresource Technology, 2017, 228: 322-329. doi: 10.1016/j.biortech.2016.12.114
|
[35] |
BOCOS E, GONZÁLEZ-ROMERO E, PAZOS M, et al. Application of electro-Fenton treatment for the elimination of 1-Butyl-3-methylimidazolium triflate from polluted water[J]. Chemical Engineering Journal, 2017, 318: 19-28. doi: 10.1016/j.cej.2016.04.058
|
[36] |
KHANDEGAR V, SAROHA A K. Electrocoagulation for the treatment of textile industry effluent: A review[J]. Journal of Environmental Management, 2013, 128: 949-693. doi: 10.1016/j.jenvman.2013.06.043
|
[37] |
YOOSEFIAN M, AHMADZADEH S, AGHASI M, et al. Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption[J]. Journal of Molecular Liquids, 2017, 225: 544-553. doi: 10.1016/j.molliq.2016.11.093
|
[38] |
AHMADZADEH S, DOLATABADI M. Removal of acetaminophen from hospital wastewater using electro-Fenton process[J]. Environmental Earth Sciences, 2018, 77(2): 1-11.
|
[39] |
LIU Y, ZHANG J, LIU F, et al. Ultra-rapid detoxification of Sb(III) using a flow-through electro-Fenton system[J]. Chemosphere, 2019, 245: 125604.
|
[40] |
汤茜, 孙娟, 任小蕾, 等. 泡沫镍和泡沫铜阴极电类Fenton氧化降解对硝基酚的比较[J]. 化工进展, 2017, 36(7): 2653-2659.
|
[41] |
DENG F, OLVERA-VARGAS H, GARCIA-RODRIGUEZ O, et al. The synergistic effect of nickel-iron-foam and tripolyphosphate for enhancing the electro-Fenton process at circum-neutral pH[J]. Chemosphere, 2018, 201: 687-696. doi: 10.1016/j.chemosphere.2018.02.186
|
[42] |
PRAMOD L, GANDHIMATHI R, LAVANYA A, et al. Heterogeneous Fenton process coupled with microfiltration for the treatment of water with higher arsenic content[J]. Chemical Engineering Communications, 2019, 207(12): 1-12.
|