[1] BULLERJAHN G S, MCKAY R M, DAVIS T W, et al. Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms: A lake erie case study[J]. Harmful Algae, 2016, 54: 223-238. doi: 10.1016/j.hal.2016.01.003
[2] CATHERINE Q, SUSANNA W, ISIDORA E S, et al. A review of current knowledge on toxic benthic freshwater cyanobacteria: Ecology, toxin production and risk management[J]. Water Research, 2013, 47(15): 5464-5479. doi: 10.1016/j.watres.2013.06.042
[3] HARKE M J, STEFFEN M M, GOBLER C J, et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, microcystis spp[J]. Harmful Algae, 2016, 54: 4-20. doi: 10.1016/j.hal.2015.12.007
[4] LIAO C H, KANG S F, WU F A. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process[J]. Chemosphere, 2001, 44: 1193-1200. doi: 10.1016/S0045-6535(00)00278-2
[5] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science and Technology, 2014, 48(3): 1859-1868. doi: 10.1021/es4036094
[6] WATTS M J, HOFMANN R, RCDSENFELDT E J. Low-pressure UV/Cl2 for advanced oxidation of taste and odor[J]. Journal American Water Works Association, 2012, 104(1): 58-65. doi: 10.5942/jawwa.2012.104.0006
[7] REMUCAL C K, MANLEY D. Emerging investigators series: The efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment[J]. Environmental Science: Water Research and Technology, 2016, 2(4): 565-579. doi: 10.1039/C6EW00029K
[8] WANG A Q, LIN Y L, XU B, et al. Kinetics and modeling of iodoform degradation during UV/chlorine advanced oxidation process[J]. Chemical Engineering Journal, 2017, 323: 312-319. doi: 10.1016/j.cej.2017.04.061
[9] ZHANG X R, HE J, LEI Y, et al. Combining solar irradiation with chlorination enhances the photochemical decomposition of microcystin-LR[J]. Water Research, 2019, 159: 324-332. doi: 10.1016/j.watres.2019.05.030
[10] NOWELL L, HOIGNÉ J. Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths: II. hydroxyl radical production[J]. Water Research, 1992, 26(5): 599-605. doi: 10.1016/0043-1354(92)90233-T
[11] WATTS M J, LINDEN K G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water[J]. Water Research, 2007, 41(13): 2871-2878. doi: 10.1016/j.watres.2007.03.032
[12] KLÄNING U K, WOLFF T. Laser flash photolysis of HCIO, CIO-, HBrO, and BrO- in aqueous solution[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1985, 89(3): 243-245.
[13] NETA P, HUIE R, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808
[14] JAYSON G G, PARSONS B J, SWALLOW A J. Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution[J]. Journal of the Chemical Society-Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1973, 69: 1597-1607.
[15] HUANG K, MACKAY A A. Microcystin-LR degradation kinetics during chlorination: Role of water quality conditions[J]. Water Research, 2020, 185: 116305. doi: 10.1016/j.watres.2020.116305
[16] CHINTALAPATI P, MOHSENI M. Degradation of cyanotoxin microcystin-LR in synthetic and natural waters by chemical-free UV/VUV radiation[J]. Journal of Hazardous Materials, 2020, 381(5): 120921.
[17] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH·/O·-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513. doi: 10.1063/1.555805
[18] BULMAN D M, MEZYK S P, REMUCAL C K. The impact of pH and irradiation wavelength on the production of reactive oxidants during chlorine photolysis[J]. Environmental Science and Technology, 2019, 53(8): 4450-4459. doi: 10.1021/acs.est.8b07225
[19] ACERO J L, RODRIGUEZ E, MERILUOTO J. Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins[J]. Water Research, 2005, 39(8): 1628-1638. doi: 10.1016/j.watres.2005.01.022
[20] CHUANG Y H, CHEN S, CHINN C J, et al. Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse[J]. Environmental Science and Technology, 2017, 51(23): 13859-13868. doi: 10.1021/acs.est.7b03570
[21] CARRELL M J. The acid ionization constant of HOCl from 5 to 35°[J]. Journal of Physical Chemistry, 1966, 70(12): 3798-3805. doi: 10.1021/j100884a007
[22] KWON M, YOON Y, KIM S, et al. Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275nm LED-UV and 254nm LP-UV[J]. Science of the Total Environment, 2018, 637-638: 1351-1357. doi: 10.1016/j.scitotenv.2018.05.080
[23] FENG Y G, SMITH D W, BOLTON J R. Photolysis of aqueous free chlorine species (HOCl and OCl-) with 254 nm ultraviolet light[J]. Journal of Environmental Engineering and Science, 2007, 6(3): 277-284. doi: 10.1139/s06-052
[24] YIN R, LING L, SHANG C. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources[J]. Water Research, 2018, 142: 452-458. doi: 10.1016/j.watres.2018.06.018
[25] BUXTON G V, SUBHANI M S. Radiation chemistry and photochemistry of oxychlorine ions. Part 2. Photodecomposition of aqueous solutions of hypochlorite ions[J]. Journal of the Chemical Society-Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1972, 68: 958-969.
[26] JIN J, EL-DIN M G, BOLTON J R. Assessment of the UV/Chlorine process as an advanced oxidation process[J]. Water Research, 2011, 45(4): 1890-1896. doi: 10.1016/j.watres.2010.12.008
[27] ZHANG X R, HE J, XIAO S, et al. Elimination kinetics and detoxification mechanisms of microcystin-LR during UV/chlorine process[J]. Chemosphere, 2019, 214: 702-709. doi: 10.1016/j.chemosphere.2018.09.162
[28] MARÍN A, TUDELA J A, GARRIDO Y, et al. Chlorinated wash water and pH regulators affect chlorine gas emission and disinfection by-products[J]. Innovative Food Science and Emerging Technologies, 2020, 66: 102533. doi: 10.1016/j.ifset.2020.102533
[29] XIE G, HU X, DU Y, et al. Light-driven breakdown of microcystin-LR in water: A critical review[J]. Chemical Engineering Journal, 2021, 417: 129244.
[30] WU Z, CHEN C, ZHU B Z, et al. Reactive nitrogen species are also involved in the transformation of micropollutants by the UV/monochloramine process[J]. Environmental Science and Technology, 2019, 53(19): 11142-11152. doi: 10.1021/acs.est.9b01212
[31] YIN R, BLATCHLEY E R, SHANG C. UV photolysis of mono- and dichloramine using UV-LEDs as radiation sources: Photodecay rates and radical concentrations[J]. Environmental Science and Technology, 2020, 54(13): 8420-8429. doi: 10.1021/acs.est.0c01639
[32] MEREL S, LEBOT B, CLEMENT M, et al. Ms identification of microcystin-LR chlorination by-products[J]. Chemosphere, 2009, 74(6): 832-839. doi: 10.1016/j.chemosphere.2008.10.024
[33] ZHANG X R, LI J, YANG J Y, et al. Chlorine/UV process for decomposition and detoxification of microcystin-LR[J]. Environmental Science and Technology, 2016, 50(14): 7671-7678. doi: 10.1021/acs.est.6b02009