[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部, 国土资源部, 2014.
[2] 王少峰. 论土壤重金属污染及防治措施[J]. 资源节约与环保, 2020(12): 36-37. doi: 10.3969/j.issn.1673-2251.2020.12.025
[3] 杨湜烟, 刘杏梅, 徐建明. 土壤重金属污染健康风险评估新视角: 概率风险评估的源起及展望[J/OL]. 土壤学报, [2021-04-02]. http://kns.cnki.net/kcms/detail/32.1119.p.20210201.1002.002.html. 2021.
[4] LIANG Y Z, DING Y, WANG P, et al. Molecular characteristics, proton dissociation properties, and metal binding properties of soil organic matter: A theoretical study[J]. Science of the Total Environment, 2019, 656: 521-530. doi: 10.1016/j.scitotenv.2018.11.386
[5] SHI W, JIN Z, HU S, et al. Dissolved organic matter affects the bioaccumulation of copper and lead in Chlorella pyrenoidosa: A case of long-term exposure[J]. Chemosphere, 2017, 174: 447-455. doi: 10.1016/j.chemosphere.2017.01.119
[6] CHOW A T, TANJI K K, GAO S, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J]. Soil Biology and Biochemistry, 2006, 38: 477-488. doi: 10.1016/j.soilbio.2005.06.005
[7] IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013: 1535.
[8] 秦大河, THOMAS S. IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展, 2014, 10(1): 1-6. doi: 10.3969/j.issn.1673-1719.2014.01.001
[9] 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5): 1068-1076. doi: 10.7522/j.issn.1000-0240.2013.0120
[10] SMITH A P, BOND-LAMBERTY B, BENSCOTER B W, et al. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought[J]. Nature Communications, 2017, 8(1): 1335. doi: 10.1038/s41467-017-01320-x
[11] DING Y, SHI Z Q, YE Q T, et al. Chemodiversity of soil dissolved organic matter[J]. Environmental Science & Technology, 2020, 54: 6174-6184.
[12] 林于廉, 龙腾锐, 夏之宁, 等. 干湿交替模式下土壤中镉的释放特征[J]. 环境化学, 2008, 27(5): 624-628. doi: 10.3321/j.issn:0254-6108.2008.05.016
[13] 邓林, 李柱, 吴龙华, 等. 水分及干燥过程对土壤重金属有效性的影响[J]. 土壤, 2014, 46(6): 1045-1051.
[14] CLARET F, SCHAEFER T, BREVET J, et al. Fractionation of Suwannee river fulvic acid and Aldrich humic acid on alpha-Al2O3: Spectroscopic evidence[J]. Environmental Science & Technology, 2008, 42(23): 8809-8815.
[15] TIAN L, LIANG Y Z, LU Y, et al. Pb(II) and Cu(II) Adsorption and desorption kinetics on ferrihydrite with different morphologies[J]. Soil Science Society of America Journal, 2018, 82(1): 96-105. doi: 10.2136/sssaj2017.08.0279
[16] TIAN L, SHI Z Q, LU Y, et al. Kinetics of cation and oxyanion adsorption and desorption on ferrihydrite: Roles of ferrihydrite binding sites and a unified model[J]. Environmental Science & Technology, 2017, 51: 10605-10614.
[17] SUN L, CHEN S, LEI C, et al. Effects of flooding on changes in Eh, pH and speciation of cadmium and lead in contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 514-518. doi: 10.1007/s00128-007-9274-8
[18] YANG L, JUNG H C, JIN H. Benthic flux of dissolved organic matter from lake sediment at different redox conditions and the possible effects of biogeochemical processes[J]. Water Research, 2014, 61(18): 97-107.
[19] 梁俭. 三峡库区消落带土壤溶解性有机质淹水释放行为与结构表征[D]. 重庆: 西南大学, 2016.
[20] 王漫莉. 砷污染土壤稳定化修复后生物有效性和长期稳定性评估[D]. 上海: 华东理工大学, 2019.
[21] LI Z, WANG L H, ZHANG H, et al. Effects of soil drying and wetting-drying cycles on the availability of heavy metals and their relationship to dissolved organic matter[J]. Soil Sediments, 2015, 15: 1510-1519. doi: 10.1007/s11368-015-1090-x
[22] LUIS L S, LAIN P H, PERE R, et al. Drying and rewetting conditions differentially affect the mineralization of fresh plant litter and extant soil organic matter[J]. Soil Biology and Biochemistry, 2018, 124: 81-89. doi: 10.1016/j.soilbio.2018.06.001
[23] 陈彦丰. 关于控制土壤有机质矿化速率的“调节阀”假说的证明[D]. 杭州: 浙江大学, 2016.
[24] LU F, CHANG C H, LEE D J, et al. Dissolved organic matter with multi-peak fluorophores in landfill leachate[J]. Chemosphere, 2009, 74(4): 575-582. doi: 10.1016/j.chemosphere.2008.09.060
[25] YAN M Q, MA X N, CHENG J X. Characterizing interactions between Suwannee river dissolved organic matter and Cu(II) using fluorescence excitation-emission matrices and parallel factor analysis[J]. Journal of Water Sustainability, 2013, 3: 165-177.
[26] ZHAO Y, SONG K S, WEN Z D, et al. Seasonal characterization of CDOM for lakes in semiarid regions of Northeast China using excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)[J]. Biogeosciences, 2016, 13: 1635-1645.
[27] DING Y, LU Y, LIAO P, et al. Molecular fractionation and sub-nanoscale distribution of dissolved organic matter on allophane[J]. Environmental Science: Nano, 2019, 6(7): 2037-2048. doi: 10.1039/C9EN00335E
[28] KY A, QWA B, MIN L A, et al. Microorganism remediation strategies towards heavy metals[J]. Chemical Engineering Journal, 2019, 360: 1553-1563. doi: 10.1016/j.cej.2018.10.226
[29] BHATTACHARYYA A, CAMPBELL A N, TFAILY M M, et al. Redox fluctuations control the coupled cycling of iron and carbon in tropical forest soils[J]. Environmental Science & Technology, 2018, 52(24): 14129-14139.