[1] |
DENG S J, ZHU H, WANG G Z, et al. Boosting fast energy storage by synergistic engineering of carbon and deficiency[J]. Nature Communications, 2020, 11(1): 1-11. doi: 10.1038/s41467-019-13993-7
|
[2] |
ZHANG L S, WANG H, WANG L Z, et al. High electrochemical performance of lithium-rich Li1.2Mn0.54NixCoyO2 cathode materials for lithium-ion batteries[J]. Materials Letters, 2016, 185: 100-103. doi: 10.1016/j.matlet.2016.08.118
|
[3] |
BHATLU M L D, BHAUMIK M, SUKANYA K. Energy management by using lithium-ion batteries, piezo materials, sensors and renewal energy system in the daily life: A review[J]. Journal of Critical Reviews, 2020, 7(7): 798-801. doi: 10.31838/jcr.07.07.146
|
[4] |
NAKAMURA M, TAKENO K. Green base station using robust solar system and high performance lithium ion battery for next generation wireless network (5G) and against mega disaster[C]//IEEE. 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia). Niigata, Japan, 2018: 201-206.
|
[5] |
CHOUDHARI V G, DHOBLE D A S, SATHE T M. A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle[J]. Journal of Energy Storage, 2020, 32: 101729. doi: 10.1016/j.est.2020.101729
|
[6] |
DEPCIK C, CASSADY T, COLLICOTT B, et al. Comparison of lithium ion batteries, hydrogen fueled combustion engines, and a hydrogen fuel cell in powering a small unmanned aerial vehicle[J]. Energy Conversion and Management, 2020, 207: 112514. doi: 10.1016/j.enconman.2020.112514
|
[7] |
LI P F, BASHIRULLAH R. A wireless power interface for rechargeable battery operated medical implants[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54(10): 912-916. doi: 10.1109/TCSII.2007.901613
|
[8] |
CHEN T M, JIN Y, LV H, et al. Applications of lithium-ion batteries in grid-scale energy storage systems[J]. Transactions of Tianjin University, 2020, 26(3): 208-217. doi: 10.1007/s12209-020-00236-w
|
[9] |
ZHENG Y, SONG W, MO W T, et al. Lithium fluoride recovery from cathode material of spent lithium-ion battery[J]. RSC Advances, 2018, 8(16): 8990-8998. doi: 10.1039/C8RA00061A
|
[10] |
东莞市钜大电子有限公司. 2020年全球动力锂离子电池行业市场现状及发展前景分析[EB/OL]. (2020-05-02) [2020-09-20]. http://www.juda.cn/news/134330.html.
|
[11] |
FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. doi: 10.1021/acs.chemrev.9b00535
|
[12] |
YUAN Y, YU H X, CHENG X, et al. Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage[J]. Chemical Engineering Journal, 2019, 374: 937-946. doi: 10.1016/j.cej.2019.05.225
|
[13] |
DIEKMANN J, HANISCH C, FROBÖSE L, et al. Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes[J]. Journal of the Electrochemical Society, 2016, 164(1): A6184-A6191.
|
[14] |
MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. doi: 10.1016/j.hydromet.2014.10.012
|
[15] |
TEDJAR F. Approach of “Electrodes to Electrodes”: Challenges for recycling advanced lithium-ion batteries for e-mobility[C]//IOP Publishing. 2014 ECS Meeting Abstracts. Como, Italy, 2014: 396.
|
[16] |
LAROUCHE F, TEDJAR F, AMOUZEGAR K, et al. Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond[J]. Materials, 2020, 13(3): 801. doi: 10.3390/ma13030801
|
[17] |
KATWALA A. The spiralling environmental cost of our lithium battery addiction[EB/OL]. [2018-08-05]. https://www.wired.co.uk/article/lithium-batteries-environment-impact, 2018.
|
[18] |
LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. doi: 10.1038/nchem.2085
|
[19] |
LIANG S S, YAN W Q, WU X, et al. Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance[J]. Solid State Ionics, 2018, 318: 2-18. doi: 10.1016/j.ssi.2017.12.023
|
[20] |
LIU Y J, ZHANG Z Q, FU Y B, et al. Investigation the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with ZnAl2O4 coating for lithium ion batteries[J]. Journal of Alloys and Compounds, 2016, 685: 523-532. doi: 10.1016/j.jallcom.2016.05.329
|
[21] |
HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. doi: 10.1038/s41586-019-1682-5
|
[22] |
欧秀芹, 孙新华, 程耀丽. 废锂离子电池的综合处理方法[J]. 天津化工, 2002, 16(4): 35-36. doi: 10.3969/j.issn.1008-1267.2002.04.018
|
[23] |
ZHANG W, XU C, HE W, et al. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them[J]. Waste Management & Research, 2018, 36(2): 99-112.
|
[24] |
ZHANG X, LI L, FAN E, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. doi: 10.1039/C8CS00297E
|
[25] |
HUANG B, PAN Z F, SU X Y, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. doi: 10.1016/j.jpowsour.2018.07.116
|
[26] |
KIM H, JANG Y C, HWANG Y, et al. End-of-life batteries management and material flow analysis in South Korea[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 1-13.
|
[27] |
BOXALL N J, KING S, CHENG K Y, et al. Urban mining of lithium-ion batteries in Australia: Current state and future trends[J]. Minerals Engineering, 2018, 128: 45-55. doi: 10.1016/j.mineng.2018.08.030
|
[28] |
ZENG X L, LI J H, SINGH N. Recycling of spent lithium-ion battery: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129-1165. doi: 10.1080/10643389.2013.763578
|
[29] |
GUO Q S, SUN D W, CHENG J H, et al. Microwave processing techniques and their recent applications in the food industry[J]. Trends in Food Science & Technology, 2017, 67: 236-247.
|
[30] |
ZHANG F, ZHOU T, LIU Y, et al. Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed[J]. Scientific Reports, 2015, 5: 11152. doi: 10.1038/srep11152
|
[31] |
BRODIE G. Applications of Microwave Heating in Agricultural and Forestry Related Industries[M]. Rijeka, Croatia: InTech, 2012: 45-78.
|
[32] |
HUANG Y F, CHIUEH P T, LO S L. A review on microwave pyrolysis of lignocellulosic biomass[J]. Sustainable Environment Research, 2016, 26(3): 103-109. doi: 10.1016/j.serj.2016.04.012
|
[33] |
SUN J, JIANG Z Y, WANG K, et al. Experimental study on microwave-SiC-assisted catalytic hydrogenation of phenol[J]. Energy & Fuels, 2019, 33(11): 11092-11100.
|
[34] |
SUN J, WANG W L, LIU Z, et al. Recycling of waste printed circuit boards by microwave-induced pyrolysis and featured mechanical processing[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11763-11769.
|
[35] |
SUN J, WANG W L, YUE Q Y. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies[J]. Materials, 2016, 9(4): 231. doi: 10.3390/ma9040231
|
[36] |
MISHRA R R, SHARMA A K. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 78-97. doi: 10.1016/j.compositesa.2015.10.035
|
[37] |
STUERGA D . Microwave-Material Interactions and Dielectric Properties, Key Ingredients for Mastery of Chemical Microwave Processes[M]. Weinhem: WILEY-VCH Verlag GmbH & Co, 2006.
|
[38] |
ZHAO Y Z, LIU B G, ZHANG L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling[J]. Journal of Hazardous Materials, 2020, 384: 121487. doi: 10.1016/j.jhazmat.2019.121487
|
[39] |
PINDAR S, DHAWAN N. Microwave processing of spent coin cells for recycling of metallic values[J]. Journal of Cleaner Production, 2021, 280: 124144. doi: 10.1016/j.jclepro.2020.124144
|
[40] |
HE F, CHEN J, CHEN G, et al. Microwave dielectric properties and reduction behavior of low-grade pyrolusite[J]. JOM, 2019, 71(11): 3909-3914. doi: 10.1007/s11837-019-03522-8
|
[41] |
LIU T, PANG Y, ZHU M, et al. Microporous Co@CoO nanoparticles with superior microwave absorption properties[J]. Nanoscale, 2014, 6(4): 2447-2454. doi: 10.1039/c3nr05238a
|
[42] |
FARAG S, SOBHY A, AKYEL C, et al. Temperature profile prediction within selected materials heated by microwaves at 2.45GHz[J]. Applied Thermal Engineering, 2012, 36: 360-369. doi: 10.1016/j.applthermaleng.2011.10.049
|
[43] |
GUPTA M, LEONG E W W. Microwaves and Metals[M]. John Wiley & Sons, 2008.
|
[44] |
JILES D. Introduction to Magnetism and Magnetic Materials[M]. CRC Press, 2015.
|
[45] |
GIERAS J F, PIECH Z J, TOMCZUK B. Linear Synchronous Motors: Transportation and Automation Systems[M]. CRC Press, 2016.
|
[46] |
MENÉNDEZ J A, ARENILLAS A, FIDALGO B, et al. Microwave heating processes involving carbon materials[J]. Fuel Processing Technology, 2010, 91(1): 1-8. doi: 10.1016/j.fuproc.2009.08.021
|
[47] |
MONSEF-MIRZAI P, RAVINDRAN M, MCWHINNIE W R, et al. Rapid microwave pyrolysis of coal: Methodology and examination of the residual and volatile phases[J]. Fuel, 1995, 74(1): 20-27. doi: 10.1016/0016-2361(94)P4325-V
|
[48] |
EL HARFI K, MOKHLISSE A, CHANÂA M B, et al. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation[J]. Fuel, 2000, 79(7): 733-742. doi: 10.1016/S0016-2361(99)00209-4
|
[49] |
FERNÁNDEZ Y, ARENILLAS A, DÍEZ M A, et al. Pyrolysis of glycerol over activated carbons for syngas production[J]. Journal of Analytical and Applied Pyrolysis, 2009, 84(2): 145-150. doi: 10.1016/j.jaap.2009.01.004
|
[50] |
MENÉNDEZ J A, MENÉNDEZ E M, GARCÍA A, et al. Thermal treatment of active carbons: A comparison between microwave and electrical hating[J]. Journal of Microwave Power and Electromagnetic Energy, 1999, 34(3): 137-143. doi: 10.1080/08327823.1999.11688398
|
[51] |
FIDALGO B, ARENILLAS A, MENÉNDEZ J A. Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO2 reforming of CH4[J]. Fuel, 2010, 89(12): 4002-4007. doi: 10.1016/j.fuel.2010.06.015
|
[52] |
SUN J, WANG W L, YUE Q Y, et al. Review on microwave-metal discharges and their applications in energy and industrial processes[J]. Applied Energy, 2016, 175: 141-157. doi: 10.1016/j.apenergy.2016.04.091
|
[53] |
DIAZ F, WANG Y, MOORTHY T, et al. Degradation mechanism of nickel-cobalt-aluminum (NCA) cathode material from spent lithium-ion batteries in microwave-assisted pyrolysis[J]. Metals, 2018, 8(8): 565. doi: 10.3390/met8080565
|
[54] |
BAJPAI R, WAGNER H D. Fast growth of carbon nanotubes using a microwave oven[J]. Carbon, 2015, 82: 327-336. doi: 10.1016/j.carbon.2014.10.077
|
[55] |
DIAZ F, FLERUS B, NAGRAJ S, et al. Comparative analysis about degradation mechanisms of printed circuit boards (PCBs) in slow and fast pyrolysis: The influence of heating speed[J]. Journal of Sustainable Metallurgy, 2018, 4(2): 205-221. doi: 10.1007/s40831-018-0163-7
|
[56] |
NIE H, XU L, SONG D, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2): 1276-1280. doi: 10.1039/C4GC01951B
|
[57] |
CHOUBEY P K, KIM M S, SRIVASTAVA R R, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources[J]. Minerals Engineering, 2016, 89: 119-137. doi: 10.1016/j.mineng.2016.01.010
|
[58] |
LI J H, SHI P X, WANG Z F, et al. A combined recovery process of metals in spent lithium-ion batteries[J]. Chemosphere, 2009, 77(8): 1132-1136. doi: 10.1016/j.chemosphere.2009.08.040
|
[59] |
HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528. doi: 10.1016/j.wasman.2015.08.035
|
[60] |
ZENG X L, LI J H. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries[J]. Journal of Hazardous Materials, 2014, 271: 50-56. doi: 10.1016/j.jhazmat.2014.02.001
|
[61] |
CHEN L, TANG X C, ZHANG Y, et al. Process for the recovery of cobalt oxalate from spent lithium-ion batteries[J]. Hydrometallurgy, 2011, 108(1/2): 80-86.
|
[62] |
WANG M M, TAN Q Y, LIU L L, et al. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8287-8294.
|
[63] |
SUN L, QIU K Q. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2011, 194: 378-384. doi: 10.1016/j.jhazmat.2011.07.114
|
[64] |
ZHANG T, HE Y Q, GE L H, et al. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 766-771. doi: 10.1016/j.jpowsour.2013.05.009
|
[65] |
汪永威, 赵光金, 朱莉娜, 等. 一种微波热解处理废旧锂电池的方法: CN103247837A[P]. 2013-08-14.
|
[66] |
殷衡. 一种以等离子体技术回收三元电池正极材料的方法: CN108199107B[P]. 2020-02-18.
|
[67] |
刘云建, 胡启阳, 李新海, 等. 从不合格锂离子蓄电池中直接回收钴酸锂[J]. 电源技术, 2006, 30(4): 308-310. doi: 10.3969/j.issn.1002-087X.2006.04.015
|
[68] |
GEORGI-MASCHLER T, FRIEDRICH B, WEYHE R, et al. Development of a recycling process for Li-ion batteries[J]. Journal of Power Sources, 2012, 207: 173-182. doi: 10.1016/j.jpowsour.2012.01.152
|
[69] |
LI J, WANG G X, XU Z M. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. Journal of Hazardous Materials, 2016, 302: 97-104. doi: 10.1016/j.jhazmat.2015.09.050
|
[70] |
XIAO J F, LI J, XU Z M. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. Journal of Hazardous Materials, 2017, 338: 124-131. doi: 10.1016/j.jhazmat.2017.05.024
|
[71] |
FAN E S, LI L, LIN J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16144-16150.
|
[72] |
HU J T, ZHANG J L, LI H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 192-199. doi: 10.1016/j.jpowsour.2017.03.093
|
[73] |
LIU P C, XIAO L, CHEN Y F, et al. Recovering valuable metals from LiNixCoyMn1-x-yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching[J]. Journal of Alloys and Compounds, 2019, 783: 743-752. doi: 10.1016/j.jallcom.2018.12.226
|
[74] |
LI J H, LI X H, HU Q Y, et al. Study of extraction and purification of Ni, Co and Mn from spent battery material[J]. Hydrometallurgy, 2009, 99(1/2): 7-12.
|
[75] |
JOULIÉ M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555. doi: 10.1016/j.jpowsour.2013.08.128
|
[76] |
ZHANG P W, YOKOYAMA T, ITABASHI O, et al. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries[J]. Hydrometallurgy, 1998, 47(2/3): 259-271.
|
[77] |
LI L, LU J, REN Y, et al. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2012, 218: 21-27. doi: 10.1016/j.jpowsour.2012.06.068
|
[78] |
LI L, GE J, CHEN R J, et al. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries[J]. Waste Management, 2010, 30(12): 2615-2621. doi: 10.1016/j.wasman.2010.08.008
|
[79] |
LI L, ZHAI L Y, ZHANG X X, et al. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process[J]. Journal of Power Sources, 2014, 262: 380-385. doi: 10.1016/j.jpowsour.2014.04.013
|
[80] |
LI L, GE J, WU F, et al. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 288-293.
|
[81] |
MISHRA D, KIM D J, RALPH D E, et al. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans[J]. Waste Management, 2008, 28(2): 333-338. doi: 10.1016/j.wasman.2007.01.010
|
[82] |
XIN B P, ZHANG D, ZHANG X, et al. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria[J]. Bioresource Technology, 2009, 100(24): 6163-6169. doi: 10.1016/j.biortech.2009.06.086
|
[83] |
ZENG G S, DENG X R, LUO S L, et al. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2012, 199/200: 164-169. doi: 10.1016/j.jhazmat.2011.10.063
|
[84] |
ZHAO Y Z, LIU B G, ZHANG L B, et al. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2020, 396: 122740. doi: 10.1016/j.jhazmat.2020.122740
|
[85] |
YIXIN H, CHUNPENG L. Microwave-assisted carbothermic reduction of ilmenite[J]. Acta Metallurgica Sinica (English Letters), 2009, 9(3): 164-170.
|
[86] |
RU J J, HUA Y X, WANG D. Preparation and characterisation of TiN by microwave-assisted carbothermic reduction-nitridation in air atmosphere[J]. Advances in Applied Ceramics, 2017, 116(8): 468-476. doi: 10.1080/17436753.2017.1357292
|
[87] |
CHE X K, SU X Z, CHI R A, et al. Microwave assisted atmospheric acid leaching of nickel from laterite ore[J]. Rare Metals, 2010, 29(3): 327-332. doi: 10.1007/s12598-010-0058-7
|
[88] |
SAMOUHOS M, TAXIARCHOU M, HUTCHEON R, et al. Microwave reduction of a nickeliferous laterite ore[J]. Minerals Engineering, 2012, 34: 19-29. doi: 10.1016/j.mineng.2012.04.005
|
[89] |
CHANG Y F, ZHAI X J, FU Y, et al. Phase transformation in reductive roasting of laterite ore with microwave heating[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 969-973. doi: 10.1016/S1003-6326(08)60167-3
|
[90] |
KRUESI P R, FRAHM JR V H. Process for the recovery of nickel, cobalt and manganese from their oxides and silicates: U.S. Patent No. 4, 311, 520 [P]. 1982-01-19.
|
[91] |
ZHAO Y, GAO J M, YUE Y, et al. Extraction and separation of nickel and cobalt from saprolite laterite ore by microwave-assisted hydrothermal leaching and chemical deposition[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(7): 612-619. doi: 10.1007/s12613-013-0774-8
|
[92] |
LIU X X, ZHANG Z Y, WU Y P. Absorption properties of carbon black/silicon carbide microwave absorbers[J]. Composites Part B: Engineering, 2011, 42(2): 326-329. doi: 10.1016/j.compositesb.2010.11.009
|
[93] |
PINDAR S, DHAWAN N. Recycling of mixed discarded lithium-ion batteries via microwave processing route[J]. Sustainable Materials and Technologies, 2020, 25: e00157. doi: 10.1016/j.susmat.2020.e00157
|
[94] |
SUNIL S R, DHAWAN N. Thermal processing of spent Li-ion batteries for extraction of lithium and cobalt-manganese values[J]. Transactions of the Indian Institute of Metals, 2019, 72(12): 3035-3044. doi: 10.1007/s12666-019-01769-y
|
[95] |
PINDAR S, DHAWAN N. Carbothermal reduction of spent mobile phones batteries for the recovery of lithium, cobalt, and manganese values[J]. JOM, 2019, 71(12): 4483-4491. doi: 10.1007/s11837-019-03799-9
|
[96] |
PINDAR S, DHAWAN N. Comparison of microwave and conventional indigenous carbothermal reduction for recycling of discarded lithium-ion batteries[J]. Transactions of the Indian Institute of Metals, 2020, 73(8): 2041-2051. doi: 10.1007/s12666-020-01956-2
|
[97] |
SUNIL S R, VISHVAKARMA S, BARNWAL A, et al. Processing of spent Li-ion batteries for recovery of cobalt and lithium values[J]. JOM, 2019, 71(12): 4659-4665. doi: 10.1007/s11837-019-03540-6
|
[98] |
NATARAJAN S, ANANTHARAJ S, TAYADE R J, et al. Recovered spinel MnCo2O4 from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium[J]. Dalton Transaction, 2017, 46(41): 14382-14392. doi: 10.1039/C7DT02613G
|
[99] |
XI G X, ZHAO T T, WANG L, et al. Effect of doping rare earths on magnetostriction characteristics of CoFe2O4 prepared from spent Li-ion batteries[J]. Physica B: Condensed Matter, 2018, 534: 76-82. doi: 10.1016/j.physb.2018.01.036
|
[100] |
MOURA M N, BARRADA R V, ALMEIDA J R, et al. Synthesis, characterization and photocatalytic properties of nanostructured CoFe2O4 recycled from spent Li-ion batteries[J]. Chemosphere, 2017, 182: 339-347. doi: 10.1016/j.chemosphere.2017.05.036
|
[101] |
FERREIRA D A, PRADOS L M Z, MAJUSTE D, et al. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2009, 187(1): 238-246. doi: 10.1016/j.jpowsour.2008.10.077
|
[102] |
JHA M K, KUMARI A, JHA A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste Management, 2013, 33(9): 1890-1897. doi: 10.1016/j.wasman.2013.05.008
|
[103] |
LI L, CHEN R J, SUN F, et al. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process[J]. Hydrometallurgy, 2011, 108(3/4): 220-225.
|
[104] |
FAN E S, LI L, ZHANG X X, et al. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11029-11035.
|
[105] |
WANG M M, ZHANG C C, ZHANG F S. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach[J]. Waste Management, 2016, 51: 239-244. doi: 10.1016/j.wasman.2016.03.006
|
[106] |
LI J G, ZHAO R S, HE X M, et al. Preparation of LiCoO2 cathode materials from spent lithium-ion batteries[J]. Ionics, 2009, 15(1): 111-113. doi: 10.1007/s11581-008-0238-8
|
[107] |
PATIL D, CHIKKAMATH S, KENY S, et al. Rapid dissolution and recovery of Li and Co from spent LiCoO2 using mild organic acids under microwave irradiation[J]. Journal of Environmental Management, 2020, 256: 109935. doi: 10.1016/j.jenvman.2019.109935
|
[108] |
ZOU H Y, GRATZ E, APELIAN D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries[J]. Green Chemistry, 2013, 15(5): 1183. doi: 10.1039/c3gc40182k
|
[109] |
SA Q N, GRATZ E, HEELAN J A, et al. Synthesis of diverse LiNixMnyCozO2 cathode materials from lithium ion battery recovery stream[J]. Journal of Sustainable Metallurgy, 2016, 2(3): 248-256. doi: 10.1007/s40831-016-0052-x
|
[110] |
SHI Y, CHEN G, LIU F, et al. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes[J]. ACS Energy Letters, 2018, 3(7): 1683-1692. doi: 10.1021/acsenergylett.8b00833
|
[111] |
ZHANG X H, CAO H B, XIE Y B, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis[J]. Separation and Purification Technology, 2015, 150: 186-195. doi: 10.1016/j.seppur.2015.07.003
|
[112] |
HE L P, SUN S Y, SONG X F, et al. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries[J]. Waste Management, 2017, 64: 171-181. doi: 10.1016/j.wasman.2017.02.011
|
[113] |
MESHRAM P, PANDEY B D, MANKHAND T R. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects[J]. Waste Management, 2015, 45: 306-313. doi: 10.1016/j.wasman.2015.05.027
|
[114] |
GOLMOHAMMADZADEH R, RASHCHI F, VAHIDI E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects[J]. Waste Management, 2017, 64: 244-254. doi: 10.1016/j.wasman.2017.03.037
|
[115] |
FU Y P, HE Y Q, YANG Y, et al. Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 832: 154920. doi: 10.1016/j.jallcom.2020.154920
|
[116] |
LI L, BIAN Y F, ZHANG X X, et al. Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study[J]. Journal of Power Sources, 2018, 377: 70-79. doi: 10.1016/j.jpowsour.2017.12.006
|
[117] |
LANNOO S, VILAS-BOAS A, SADEGHI S M, et al. An environmentally friendly closed loop process to recycle raw materials from spent alkaline batteries[J]. Journal of Cleaner Production, 2019, 236: 117612. doi: 10.1016/j.jclepro.2019.117612
|
[118] |
KARIMI G R, ROWSON N A, HEWITT C J. Bioleaching of copper via iron oxidation from chalcopyrite at elevated temperatures[J]. Food and Bioproducts Processing, 2010, 88(1): 21-25. doi: 10.1016/j.fbp.2009.06.005
|
[119] |
SMITH S L, GRAIL B M, JOHNSON D B. Reductive bioprocessing of cobalt-bearing limonitic laterites[J]. Minerals Engineering, 2017, 106: 86-90. doi: 10.1016/j.mineng.2016.09.009
|
[120] |
HOREH N B, MOUSAVI S M, SHOJAOSADATI S A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger[J]. Journal of Power Sources, 2016, 320: 257-266. doi: 10.1016/j.jpowsour.2016.04.104
|
[121] |
XIN Y Y, GUO X M, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-258. doi: 10.1016/j.jclepro.2016.01.001
|
[122] |
POLLMANN K, RAFF J, MERROUN M, et al. Metal binding by bacteria from uranium mining waste piles and its technological applications[J]. Biotechnology Advances, 2006, 24(1): 58-68. doi: 10.1016/j.biotechadv.2005.06.002
|
[123] |
MACASKIE L E, MIKHEENKO I P, YONG P, et al. Today's wastes, tomorrow's materials for environmental protection[J]. Hydrometallurgy, 2010, 104(3/4): 483-487.
|
[124] |
YEMIŞ O, MAZZA G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction[J]. Bioresource Technology, 2011, 102(15): 7371-7378. doi: 10.1016/j.biortech.2011.04.050
|
[125] |
RAMASAMY S, MOGHTADERI B. Dielectric properties of typical Australian wood-based biomass materials at microwave frequency[J]. Energy & Fuels, 2010, 24(8): 4534-4548.
|
[126] |
SAIT H H, SALEMA A A. Microwave dielectric characterization of Saudi Arabian date palm biomass during pyrolysis and at industrial frequencies[J]. Fuel, 2015, 161: 239-247. doi: 10.1016/j.fuel.2015.08.058
|
[127] |
TATEISHI K, DU BOULAY D, ISHIZAWA N, et al. Structural disorder along the lithium diffusion pathway in cubically stabilized lithium manganese spinel II. Molecular dynamics calculation[J]. Journal of Solid State Chemistry, 2003, 174(1): 175-181. doi: 10.1016/S0022-4596(03)00207-X
|
[128] |
YOON W S, IANNOPOLLO S, GREY C P, et al. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2–x)/3Li(1–2x)/3]O2[J]. Electrochemical and Solid-State Letters, 2004, 7(7): A167. doi: 10.1149/1.1737711
|
[129] |
GADJOV H, GOROVA M, KOTZEVA V, et al. LiMn2O4 prepared by different methods at identical thermal treatment conditions: structural, morphological and electrochemical characteristics[J]. Journal of Power Sources, 2004, 134(1): 110-117. doi: 10.1016/j.jpowsour.2004.03.027
|
[130] |
RODRÍGUEZ-CARVAJAL J, ROUSSE G, MASQUELIER C, et al. Electronic crystallization in a lithium battery material: Columnar ordering of electrons and holes in the Spinel LiMn2O4[J]. Physical Review Letters, 1998, 81(21): 4660. doi: 10.1103/PhysRevLett.81.4660
|
[131] |
GILBERT J A, SHKROB I A, ABRAHAM D P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells[J]. Journal of the Electrochemical Society, 2017, 164(2): A389-A399. doi: 10.1149/2.1111702jes
|
[132] |
MENG X Q, HAO J, CAO H B, et al. Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering[J]. Waste Management, 2019, 84: 54-63. doi: 10.1016/j.wasman.2018.11.034
|
[133] |
张维民, 张娜, 张铁柱, 等. 废弃电池回收再生制备锂电池三元正极材料的方法: CN110265659A[P]. 2019-09-20.
|
[134] |
刘静静, 仇卫华, 赵海雷, 等. 锂离子电池用层状LiMnO2基正极材料的研究进展[J]. 硅酸盐学报, 2005, 33(9): 1127-1132. doi: 10.3321/j.issn:0454-5648.2005.09.016
|
[135] |
SHI Y, ZHANG M H, MENG Y S, et al. Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0<x<1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes[J]. Advanced Energy Materials, 2019, 9(20): 1900454. doi: 10.1002/aenm.201900454
|
[136] |
KIM D S, SOHN J S, LEE C K, et al. Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries[J]. Journal of Power Sources, 2004, 132(1/2): 145-149.
|
[137] |
CONTESTABILE M, PANERO S, SCROSATI B. A laboratory-scale lithium-ion battery recycling process[J]. Journal of Power Sources, 2001, 92(1/2): 65-69.
|
[138] |
LIU Y J, HU Q Y, LI X H, et al. Recycle and synthesis of LiCoO2 from incisors bound of Li-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(4): 956-959. doi: 10.1016/S1003-6326(06)60359-2
|
[139] |
SA Q N, GRATZ E, HE M N, et al. Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream[J]. Journal of Power Sources, 2015, 282: 140-145. doi: 10.1016/j.jpowsour.2015.02.046
|
[140] |
LEE C K, RHEE K I. Preparation of LiCoO2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 17-21. doi: 10.1016/S0378-7753(02)00037-X
|
[141] |
LEE C K, RHEE K I. Reductive leaching of cathodic active materials from lithium ion battery wastes[J]. Hydrometallurgy, 2003, 68(1/2/3): 5-10.
|
[142] |
BALAJI S, MUTHARASU D, SANKARA SUBRAMANIAN N, et al. A review on microwave synthesis of electrode materials for lithium-ion batteries[J]. Ionics, 2009, 15(6): 765-777. doi: 10.1007/s11581-009-0350-4
|
[143] |
LI J, WANG Y, WANG L H, et al. A facile recycling and regeneration process for spent LiFePO4 batteries[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(15): 14580-14588. doi: 10.1007/s10854-019-01830-y
|
[144] |
LI X L, ZHANG J, SONG D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84. doi: 10.1016/j.jpowsour.2017.01.118
|
[145] |
BAO S J, LIANG Y Y, LI H L. Synthesis and electrochemical properties of LiMn2O4 by microwave-assisted Sol-gel method[J]. Materials Letters, 2005, 59(28): 3761-3765. doi: 10.1016/j.matlet.2005.07.012
|
[146] |
TANG X, WANG R, REN Y F, et al. Effective regeneration of scrapped LiFePO4 material from spent lithium-ion batteries[J]. Journal of Materials Science, 2020, 55(27): 13036-13048. doi: 10.1007/s10853-020-04907-w
|
[147] |
YAN H W, HUANG X J, LI H, et al. Electrochemical study on LiCoO2 synthesized by microwave energy[J]. Solid State Ionics, 1998, 113-115: 11-15.
|
[148] |
ELUMALAI P, VASAN H N, MUNICHANDRAIAH N. Microwave synthesis and electrochemical properties of LiCo1−xMxO2 (M = Al and Mg) cathodes for Li-ion rechargeable batteries[J]. Journal of Power Sources, 2004, 125(1): 77-84. doi: 10.1016/S0378-7753(03)00815-2
|
[149] |
LIU H X, HU C, ZHU X J, et al. Solid chemical reaction in microwave and millimeter-wave fields for the syntheses of LiMn2O4 compound[J]. Materials Chemistry and Physics, 2004, 88(2/3): 290-294.
|
[150] |
FU Y P, LIN C H, SU Y H, et al. Electrochemical properties of LiMn2O4 synthesized by the microwave-induced combustion method[J]. Ceramics International, 2004, 30(7): 1953-1959. doi: 10.1016/j.ceramint.2003.12.183
|
[151] |
CUI T, HUA N, HAN Y, et al. Preparation and electrochemical properties of LiMn2O4 by a rheological-phase-assisted microwave synthesis method[J]. Inorganic Materials, 2008, 44(5): 542-548. doi: 10.1134/S002016850805021X
|
[152] |
HIGUCHI M, KATAYAMA K, AZUMA Y, et al. Synthesis of LiFePO4 cathode material by microwave processing[J]. Journal of Power Sources, 2003, 119-121: 258-261.
|
[153] |
LI J, JIN Y L, ZHANG X G, et al. Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries[J]. Solid State Ionics, 2007, 178(29/30): 1590-1594.
|
[154] |
FU Y P, SU Y H, WU S H, et al. LiMn2−yMyO4 (M = Cr, Co) cathode materials synthesized by the microwave-induced combustion for lithium ion batteries[J]. Journal of Alloys and Compounds, 2006, 426(1/2): 228-234.
|
[155] |
FU Y P, SU Y H, LIN C H. Comparison of microwave-induced combustion and solid-state reaction for synthesis of LiMn2−xCrxO4 powders and their electrochemical properties[J]. Solid State Ionics, 2004, 166(1/2): 137-146.
|
[156] |
LEE K S, MYUNG S T, PRAKASH J, et al. Optimization of microwave synthesis of Li[Ni0.4Co0.2Mn0.4]O2 as a positive electrode material for lithium batteries[J]. Electrochimica Acta, 2008, 53(7): 3065-3074. doi: 10.1016/j.electacta.2007.11.042
|
[157] |
赵新兵, 周斌, 曹高劭, 等. 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法: CN102751548A[P]. 2012-10-24.
|
[158] |
LI F X, QIU W H, HU H Y, et al. Electrochemical performance of LiFePO4 synthesized by microwave processing as lithium battery cathode[J]. Chinese Journal of Power Sources, 2005, 29(6): 346.
|
[159] |
AMINE K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries[J]. Electrochemical and Solid-State Letters, 1999, 3(4): 178. doi: 10.1149/1.1390994
|
[160] |
OKADA S, SAWA S, EGASHIRA M, et al. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries[J]. Journal of Power Sources, 2001, 97-98: 430-432. doi: 10.1016/S0378-7753(01)00631-0
|
[161] |
LLORIS J M, PÉREZ VICENTE C, TIRADO J L. Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure[J]. Electrochemical and Solid-State Letters, 2002, 5(10): A234. doi: 10.1149/1.1507941
|
[162] |
LUDWIG J, MARINO C, HAERING D, et al. Morphology-controlled microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for Li-ion batteries[J]. Journal of Power Sources, 2017, 342: 214-223. doi: 10.1016/j.jpowsour.2016.12.059
|
[163] |
LUDWIG J, GEPRÄGS S, NORDLUND D, et al. Co11Li[(OH)5O][(PO3OH)(PO4)5], a lithium-stabilized, mixed-valent cobalt(II, III) hydroxide phosphate framework[J]. Inorganic Chemistry, 2017, 56(18): 10950-10961. doi: 10.1021/acs.inorgchem.7b01152
|
[164] |
ZAINI M A A, KAMARUDDIN M J. Critical issues in microwave-assisted activated carbon preparation[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 238-241. doi: 10.1016/j.jaap.2013.02.003
|
[165] |
CHATTERJEE S, BASAK T, DAS S K. Microwave driven convection in a rotating cylindrical cavity: A numerical study[J]. Journal of Food Engineering, 2007, 79(4): 1269-1279. doi: 10.1016/j.jfoodeng.2006.04.039
|
[166] |
DATTA A K, HU W. Quality optimization of dielectric heating processes[J]. Food Technology, 1992, 46(12): 53-56.
|
[167] |
ROUSSY G, JASSM S, THIEBAUT J M T. Modeling of a fluidized bed irradiatel by a single or a Mult1Mode electric microwave field distribution[J]. Journal of Microwave Power and Electromagnetic Energy, 1995, 30(3): 178-187. doi: 10.1080/08327823.1995.11688274
|
[168] |
BASAK T, AYAPPA K G. Role of length scales on microwave thawing dynamics in 2D cylinders[J]. International Journal of Heat and Mass Transfer, 2002, 45(23): 4543-4559. doi: 10.1016/S0017-9310(02)00171-0
|
[169] |
CHA-UM W, RATTANADECHO P, PAKDEE W. Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: Influence of sample sizes, positions, and microwave power[J]. Food and Bioprocess Technology, 2011, 4(4): 544-558. doi: 10.1007/s11947-009-0187-x
|
[170] |
CHA-UM W, RATTANADECHO P, PAKDEE W. Experimental analysis of microwave heating of dielectric materials using a rectangular wave guide (MODE: TE10) (Case study: Water layer and saturated porous medium)[J]. Experimental Thermal and Fluid Science, 2009, 33(3): 472-481. doi: 10.1016/j.expthermflusci.2008.11.008
|
[171] |
MORIWAKI S, MACHIDA M, TATSUMOTO H, et al. A study on thermal runaway of poly(vinyl chloride) by microwave irradiation[J]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1/2): 238-242.
|
[172] |
GUPTA N, MIDHA V, BALAKOTAIAH V, et al. Bifurcation analysis of thermal runaway in microwave heating of ceramics[J]. Journal of the Electrochemical Society, 1999, 146(12): 4659-4665. doi: 10.1149/1.1392690
|
[173] |
KRIEGSMANN G A. Thermal runaway in microwave heated ceramics: A one-dimensional model[J]. Journal of Applied Physics, 1992, 71(4): 1960-1966. doi: 10.1063/1.351191
|
[174] |
VRIEZINGA C A, SÁNCHEZ-PEDREÑO S, GRASMAN J. Thermal runaway in microwave heating: A mathematical analysis[J]. Applied Mathematical Modelling, 2002, 26(11): 1029-1038. doi: 10.1016/S0307-904X(02)00058-6
|
[175] |
LIU B. The microwave heating of two-dimensional slabs with small Arrhenius absorptivity[J]. IMA Journal of Applied Mathematics, 1999, 62(2): 137-166. doi: 10.1093/imamat/62.2.137
|
[176] |
ROUSSY G, BENNANI A, THIEBAUT J M. Temperature runaway of microwave irradiated materials[J]. Journal of Applied Physics, 1987, 62(4): 1167-1170. doi: 10.1063/1.339666
|