[1] |
CAO Y, XIAN Y L, QIAN L C, et al. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 794-800. doi: 10.1016/j.jphotochem.2018.07.023
|
[2] |
郑佩, 秦昉, 白波, 等. TiO2@碳纳米管吸附去除盐酸四环素[J]. 环境工程学报, 2015, 9(8): 3615-3623. doi: 10.12030/j.cjee.20150806
|
[3] |
WANG H, WU Y, FENG M B, et al. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam[J]. Water Research, 2018, 144: 215-225. doi: 10.1016/j.watres.2018.07.025
|
[4] |
刘洋, 高生旺, 王丽君, 等. 多孔MoS2/g-C3N4 材料对水环境中四环素的降解[J]. 环境工程学报, 2019, 13(4): 818-825. doi: 10.12030/j.cjee.201809155
|
[5] |
RASHEED H U, LV X M, WEI W, et al. Synthesis and studies of ZnO doped with g-C3N4 nanocomposites for the degradation of tetracycline hydrochloride under the visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103152. doi: 10.1016/j.jece.2019.103152
|
[6] |
PANG Y X, KONG L J, LEI H Y, et al. Combined microwave-induced and photocatalytic oxidation using zinc ferrite catalyst for efficient degradation of tetracycline hydrochloride in aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 397-404. doi: 10.1016/j.jtice.2018.08.008
|
[7] |
SAITOH T, SHIBATA K, OHTANI Y, et al. Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions[J]. Separation and Purification Technology, 2017, 187: 76-83. doi: 10.1016/j.seppur.2017.06.036
|
[8] |
XU R, YANG Z H, WANG Q P, et al. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge[J]. Science of the Total Environment, 2018, 612: 788-798. doi: 10.1016/j.scitotenv.2017.08.295
|
[9] |
YAN X, QIN J, NING G T, et al. A novel poly(triazine imide) hollow tube/ZnO heterojunction for tetracycline hydrochloride degradation under visible light irradiation[J]. Advanced Powder Technology, 2019, 30(2): . 359-365. doi: 10.1016/j.apt.2018.11.013
|
[10] |
SONG J, SUN G, YU J Y, et al. Construction of ternary Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures and mechanical flexibility for water purification[J]. Ceramics International, 2020, 46(1): 468-475. doi: 10.1016/j.ceramint.2019.08.284
|
[11] |
ZHENG X, LI D Z, LI X F, et al. Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties[J]. Applied Catalysis B: Environmental, 2015, 168-169: 408-415. doi: 10.1016/j.apcatb.2015.01.001
|
[12] |
ZHANG H N, LI Y F, WANG J Z, et al. An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2[J]. Applied Catalysis B: Environmental, 2021, 284: 119692. doi: 10.1016/j.apcatb.2020.119692
|
[13] |
LI X, YU J G,JARONIEC M. Hierarchical photocatalysts[J]. Chemical Society Reviews, 2016, 45(9): 2603-2636. doi: 10.1039/C5CS00838G
|
[14] |
FAN Z H, MENG F M, ZHANG M, et al. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity[J]. Applied Surface Science, 2016, 360: 298-305. doi: 10.1016/j.apsusc.2015.11.021
|
[15] |
YU X, ZHAO Z H, ZHANG J, et al. One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO2 nanostructures for highly efficient photocatalysis[J]. CrystEngComm, 2017, 19(1): 129-136. doi: 10.1039/C6CE02241C
|
[16] |
GUO Z Y, WANG Q, SHEN T, et al. Synthesis of 3D CQDs/urchin-like and yolk-shell TiO2 hierarchical structure with enhanced photocatalytic properties[J]. Ceramics International, 2019, 45(5): 5858-5865. doi: 10.1016/j.ceramint.2018.12.052
|
[17] |
GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Advanced Materials, 2019, 31(50): 1901997. doi: 10.1002/adma.201901997
|
[18] |
LIAO Y L, YUAN B T, ZHANG D N,et al. Fabrication of heterostructured metal oxide/TiO2 nanotube Arrays prepared via thermal decomposition and crystallization[J]. Inorganic Chemistry, 2018, 57(16): 10249-10256. doi: 10.1021/acs.inorgchem.8b01483
|
[19] |
YU B, MENG F M, KHAN M W, et al. Synthesis of hollow TiO2@g-C3N4/Co3O4 core-shell microspheres for effective photooxidation degradation of tetracycline and MO[J]. Ceramics International, 2020, 46(9): 13133-13143. doi: 10.1016/j.ceramint.2020.02.087
|
[20] |
苏海英, 王盈霏, 王枫亮, 等. g-C3N4/TiO2复合材料光催化降解布洛芬的机制[J]. 中国环境科学, 2017, 37(1): 195-202. doi: 10.3969/j.issn.1000-6923.2017.01.025
|
[21] |
ZHANG Y, CUI W Q, AN W J, et al. Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure[J]. Applied Catalysis B: Environmental, 2018, 221: 36-46. doi: 10.1016/j.apcatb.2017.08.076
|
[22] |
SHENG Y Q, WEI Z, MIAO H, et al. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst[J]. Chemical Engineering Journal, 2019, 370: 287-294. doi: 10.1016/j.cej.2019.03.197
|
[23] |
QIAO D S, LI Z H, DUAN J Y, et al. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants[J]. Chemical Engineering Journal, 2020, 400: 125952. doi: 10.1016/j.cej.2020.125952
|
[24] |
WANG J, WANG G H, WEI X H, et al. ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB[J]. Applied Surface Science, 2018, 456: 666-675. doi: 10.1016/j.apsusc.2018.06.182
|
[25] |
KAYACI F, VEMPATI S, OZGIT-AKGUN C, et al. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition[J]. Nanoscale, 2014, 6(11): 5735-5745. doi: 10.1039/c3nr06665g
|
[26] |
LI Y, ZHOU Y S, WANG Y, et al. Au nanoparticle-decorated urchin-like TiO2 hierarchical microspheres for high performance dye-sensitized solar cells[J]. Electrochimica Acta, 2019, 293: 230-239. doi: 10.1016/j.electacta.2018.10.035
|
[27] |
WANG N, LI X Y, HOU Y, et al. Synthesis of ZnO/TiO2 nanotube composite fifilm by a two-step route[J]. Materials Letters, 2008, 62: 3691-3693. doi: 10.1016/j.matlet.2008.04.052
|
[28] |
LIAO Y L, ZHANG K B, WANG X Y, et al. Preparation of ZnO@TiO2 nanotubes heterostructured film by thermal decomposition and their photocatalytic performances[J]. RSC Advances, 2018, 8: 8064-8070. doi: 10.1039/C7RA13222K
|