[1] 徐慧敏, 何国富, 戴晓虎, 等. 超声联合低温热水解促进剩余污泥破解和厌氧消化的研究[J]. 中国环境科学, 2016, 36(9): 2703-2708. doi: 10.3969/j.issn.1000-6923.2016.09.026
[2] LIU H B, WANG Y Y, WANG L, et al. Stepwise hydrolysis to improve carbon releasing efficiency from sludge[J]. Water Research, 2017, 119(1): 225-233.
[3] 郝晓地, 唐兴, 李季, 等. 腐殖酸影响剩余污泥厌氧消化过程实验研究[J]. 环境科学报, 2018, 38(8): 3061-3068.
[4] DARA S M, GHASIMI D, KAOUTAR A, et al. Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions[J]. Chemical Engineering Journal, 2016, 295: 181-191. doi: 10.1016/j.cej.2016.03.045
[5] AMIR S, JOURAIPHY A, MEDDICH A, et al. Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR[J]. Journal of Hazardous Materials, 2010, 177(1): 524-529.
[6] WU W, SHAN G Q, XIANG Q, et al. Effects of humic acids with different polarities on the photocatalytic activity of nano-TiO2 at environment relevant concentration[J]. Water Research, 2017, 122(1): 78-85.
[7] LI J, HAO X D, MARK C M, et al. Effect of humic acids on batch anaerobic digestion of excess sludge[J]. Water Research, 2019, 155(15): 431-443.
[8] 李海洋, 程国玲. 电絮凝-膜分离反应器去除水中腐殖酸[J]. 工业水处理, 2020, 40(11): 32-35.
[9] LI X D, WU B, ZHANG Q, et al. Complexation of humic acid with Fe ions upon persulfate/ferrous oxidation: Further insight from spectral analysis[J]. Journal of Hazardous Materials, 2020, 399: 123071. doi: 10.1016/j.jhazmat.2020.123071
[10] YANG Y, HUAN L I, JIN L I. Variation in humic and fulvic acids during thermal sludge treatment assessed by size fractionation, elementary analysis, and spectroscopic methods[J]. Frontiers of Environmental Science & Engineering, 2014, 8(6): 854-862.
[11] 王文东, 王亚博, 范庆海, 等. 紫外辐射对小分子有机酸化学凝聚性作用途径探讨[J]. 环境科学, 2014, 35(10): 3789-3793.
[12] 龚昕. 玻璃纤维负载二氧化钛光催化处理水中腐殖酸的应用基础研究[D]. 湘潭: 湖南科技大学, 2015.
[13] 陆小游, 刘宏波, 黄芳, 等. 厌氧发酵产挥发性脂肪酸实现太湖蓝藻泥的减量与资源化[J]. 环境工程学报, 2020, 14(5): 1376-1384. doi: 10.12030/j.cjee.201907172
[14] 王元元, 刘和, 符波, 等. 活性污泥吸附联合发酵产酸资源化回收污水碳源[J]. 环境工程学报, 2017, 11(12): 6276-6281. doi: 10.12030/j.cjee.201702067
[15] CHOI J M, HAN S K, LEE C Y. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment[J]. Bioresource Technology, 2018, 259: 207-213. doi: 10.1016/j.biortech.2018.02.123
[16] THURMAN E M, MALCOM R L. Preparative isolation of aquatic humic substances[J]. Environmental Science & Technology, 1981, 15(4): 463-466.
[17] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[18] 刘亚子, 高占启. 腐殖质提取与表征研究进展[J]. 环境科技, 2011, 24(1): 76-80.
[19] WANG W D, WANG W, FAN Q, et al. Effects of UV radiation on humic acid coagulation characteristics in drinking water treatment processes[J]. Chemical Engineering Journal, 2014, 256: 137-143. doi: 10.1016/j.cej.2014.06.113
[20] XU Y, LU Y, ZHENG L, et al. Effects of humic matter on the anaerobic digestion of sewage sludge: New insights from sludge structure[J]. Chemosphere, 2019, 243: 125421.
[21] 朱江鹏, 梅婷, 彭云, 等. 荧光猝灭法研究洛克沙胂与腐殖酸的相互作用[J]. 环境科学, 2014, 35(7): 2620-2626.
[22] 曹庆良, 夏建国. 低相对分子质量有机酸对无机纳米颗粒吸附-解吸Ca2+的影响[J]. 安全与环境学报, 2014, 14(3): 245-250.
[23] LI J, HAO X D, MARK C M, et al. Relieving the inhibition of humic acid on anaerobic digestion of excess sludge by metal ions[J]. Water Research, 2021, 188: 116541. doi: 10.1016/j.watres.2020.116541
[24] 冯宝瑞, 刘海成, 李阳, 等. Fe3O4@SiO2@TiO2-AC光催化降解水源水中腐殖酸[J]. 工业水处理, 2020, 40(8): 55-59.
[25] LIU K, CHEN Y G, XIAO N D, et al. Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge[J]. Environmental Science & Technology, 2015, 49: 4929-4936.
[26] 丁光月, 李彩霞. Fe2O3可见光光催化降解水中腐殖酸的研究[J]. 应用化工, 2009(6): 788-791. doi: 10.3969/j.issn.1671-3206.2009.06.003
[27] 李艳. 土壤腐殖酸与酶蛋白相互作用的机制[D]. 武汉: 华中农业大学, 2013.
[28] 肖骁. 生活垃圾填埋腐殖质电子转移规律研究[D]. 北京: 中国环境科学研究院, 2018.
[29] 周鹏. 污泥厌氧消化过程腐殖质表征及其演变研究[D]. 北京: 北京建筑大学, 2014.