[1] |
MINO T, LIU W T, KURISU F, et al. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes[J]. Water Science & Technology, 1995, 31(2): 25-34.
|
[2] |
GUO G, WU D, HAO T, et al. Functional bacteria and process metabolism of the denitrifying sulfur conversion-associated enhanced biological phosphorus removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration[J]. Water Research, 2016, 95: 289-299. doi: 10.1016/j.watres.2016.03.013
|
[3] |
LAW Y, KIRKEGAARD R H, COKRO A A, et al. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions[J]. Scientific Reports, 2016, 6(1): 25719. doi: 10.1038/srep25719
|
[4] |
MCILROY S J, ONETTO C A, MCILROY B, et al. Genomic and in situ analyses reveal the Micropruina spp. as abundant fermentative glycogen accumulating organisms in enhanced biological phosphorus removal systems[J]. Frontiers in Microbiology, 2018, 9: 1004. doi: 10.3389/fmicb.2018.01004
|
[5] |
SHEN N, ZHOU Y. Enhanced biological phosphorus removal with different carbon sources[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4735-4745. doi: 10.1007/s00253-016-7518-4
|
[6] |
PISCO A R, BENGTSSON S, WERKER A, et al. Community structure evolution and enrichment of glycogen-accumulating organisms producing polyhydroxyalkanoates from fermented molasses[J]. Applied and Environmental Microbiology, 2009, 75(14): 4676-4686. doi: 10.1128/AEM.02486-08
|
[7] |
BENGTSSON S, WERKER A, CHRISTENSSON M, et al. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater[J]. Bioresource Technology, 2008, 99(3): 509-516. doi: 10.1016/j.biortech.2007.01.020
|
[8] |
JI J, PENG Y, MAI W, et al. Achieving advanced nitrogen removal from low C/N wastewater by combining endogenous partial denitrification with anammox in mainstream treatment[J]. Bioresource Technology, 2018, 270: 570-579. doi: 10.1016/j.biortech.2018.08.124
|
[9] |
MENG Q, ZENG W, WANG B, et al. New insights in the competition of polyphosphate-accumulating organisms and glycogen-accumulating organisms under glycogen accumulating metabolism with trace Poly-P using flow cytometry[J]. Chemical Engineering Journal, 2020, 385: 123915. doi: 10.1016/j.cej.2019.123915
|
[10] |
WELLES L, LOPEZVAZQUEZ C M, HOOIJMANS C M, et al. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions[J]. AMB Express, 2016, 6(1): 44. doi: 10.1186/s13568-016-0214-z
|
[11] |
中华人民共和国国家卫生和计划生育委员会. 食品中丙酸钠、丙酸钙的测定: GB 5009.120-2016[S]. 北京: 中国标准出版社, 2016.
|
[12] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[13] |
OEHMEN A, KELLER L B, ZENG R J, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136.
|
[14] |
王景峰, 王暄, 季民, 等. 聚糖菌颗粒污泥基于胞内储存物质的同步硝化反硝化[J]. 环境科学, 2006, 27(3): 473-477. doi: 10.3321/j.issn:0250-3301.2006.03.014
|
[15] |
ZHANG M, WANG Y, FAN Y, et al. Bioaugmentation of low C/N ratio wastewater: Effect of acetate and propionate on nutrient removal, substrate transformation, and microbial community behavior[J]. Bioresource Technology, 2019, 306: 122465.
|
[16] |
JIANG Y, CHEN Y. The effects of the ratio of propionate to acetate on the transformation and composition of polyhydroxyalkanoates with enriched cultures of glycogen-accumulating organisms[J]. Environmental Technology, 2009, 30(3): 241-249. doi: 10.1080/09593330802536347
|
[17] |
SMOLDERS G J, MEIJ J V D, VAN LOOSDRECHT M C M, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 2010, 43(6): 461-470.
|
[18] |
ZENG R, YUAN Z, VAN LOOSDRECHT M C M, et al. Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions[J]. Biotechnology and Bioengineering, 2002, 80(3): 277-279. doi: 10.1002/bit.10370
|
[19] |
ACEVEDO B, OEHMEN A, CARVALHO G, et al. Metabolic shift of polyphosphate- accumulating organisms with different levels of polyphosphate storage[J]. Water Research, 2012, 46(6): 1889-1900. doi: 10.1016/j.watres.2012.01.003
|
[20] |
MCILROY S J, ALBERTSEN M, ANDRESEN E K, et al. ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity[J]. The ISME Journal, 2014, 8(3): 613-624. doi: 10.1038/ismej.2013.162
|
[21] |
RUBIO-RINCON F J, LOPEZ-VAZQUEZ C M, WELLES L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164. doi: 10.1016/j.watres.2017.05.001
|
[22] |
CARLOS M, LOPEZ-VAZQUEZ, CHRISTINE M, et al. Temperature effects on glycogen accumulating organisms[J]. Water Research, 2009, 43(11): 2852-2864. doi: 10.1016/j.watres.2009.03.038
|
[23] |
MADS A, MCILROY S J, MIKKEL S B, et al. “Candidatus Propionivibrio aalborgensis”: A novel glycogen accumulating organism abundant in full-scale enhanced biological phosphorus removal plants[J]. Frontiers in Microbiology, 2016, 7: 1033.
|
[24] |
LIU M, YAO B, CONG S, et al. Optimization of wastewater phosphorus removal in winter temperatures using an anaerobic-critical aerobic strategy in a pilot-scale sequencing batch reactor[J]. Water, 2019, 12(1): 110. doi: 10.3390/w12010110
|
[25] |
ONNISHAYDEN A, SRINIVASAN V, TOOKER N B, et al. Survey of full-scale sidestream enhanced biological phosphorus removal (S2EBPR) systems and comparison with conventional EBPRs in North America: Process stability, kinetics, and microbial populations[J]. Water Environment Research, 2020, 92(3): 403-417. doi: 10.1002/wer.1198
|
[26] |
SELVARAJAN R, SIBANDA T, VENKATACHALAM S, et al. Industrial wastewaters harbor a unique diversity of bacterial communities revealed by high-throughput amplicon analysis[J]. Annals of Microbiology, 2018, 68(7): 445-458. doi: 10.1007/s13213-018-1349-8
|
[27] |
CARVALHO V C, FREITAS E B, SILVA P J, et al. The impact of operational strategies on the performance of a photo-EBPR system[J]. Water Research, 2018, 129: 190-198. doi: 10.1016/j.watres.2017.11.010
|
[28] |
CARVALHO V C, FREITAS E B, FRADINHO J C, et al. The effect of seed sludge on the selection of a photo-EBPR system[J]. New Biotechnology, 2019, 49: 112-119. doi: 10.1016/j.nbt.2018.10.003
|
[29] |
TU Y J, SCHULER A J. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater[J]. Environmental Science & Technology, 2013, 47(8): 3816-3824.
|
[30] |
王少坡, 李柱, 赵乐丹, 等. 长期低聚磷条件对AO-SBR系统Accumulibacter代谢特性的影响[J]. 环境科学, 2019, 40(5): 337-344.
|
[31] |
ACEVEDO B, BORRAS L, OEHMEN A, et al. Modelling the metabolic shift of polyphosphate-accumulating organisms[J]. Water Research, 2014, 65: 235-244. doi: 10.1016/j.watres.2014.07.028
|
[32] |
樊龙江, 吴三玲, 邱杰, 等. 生物信息学[M]. 杭州: 浙江大学出版社, 2017: 309-310.
|