[1] |
ŞOLPAN D, GÜVEN O. Decoloration and degradation of some textile dyes by gamma irradiation[J]. Radiation Physics and Chemistry, 2002, 65(4/5): 549-558. doi: 10.1016/S0969-806X(02)00366-3
|
[2] |
戴日成, 张统, 郭茜, 等. 印染废水水质特征及处理技术综述[J]. 给水排水, 2000, 26(10): 33-37. doi: 10.3969/j.issn.1002-8471.2000.10.010
|
[3] |
张宇峰, 滕洁, 张雪英, 等. 印染废水处理技术的研究进展[J]. 工业水处理, 2003, 23(4): 23-27. doi: 10.3969/j.issn.1005-829X.2003.04.006
|
[4] |
ZHOU Q. Chemical pollution and transport of organic dyes in water-soil-crop systems of the chinese coast[J]. Bulletin of Environmental Contamination and Toxicology, 2001, 66(6): 784-793.
|
[5] |
任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. doi: 10.3969/j.issn.0438-1157.2013.01.011
|
[6] |
冯氏云, 全凤, 胡芸, 等. {001}面TiO2光催化降解罗丹明B的研究[J]. 水处理技术, 2013, 39(6): 49-52. doi: 10.3969/j.issn.1000-3770.2013.06.013
|
[7] |
魏宏斌, 李田. 水中有机污染物的光催化氧化[J]. 环境科学进展, 1994, 2(3): 50-57.
|
[8] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0
|
[9] |
FOX M A, DULAY M T. Heterogeneous photocatalysis[J]. Chemical Reviews, 1993, 93(1): 341-357. doi: 10.1021/cr00017a016
|
[10] |
CHENG Z P, CHU X Z, SHENG Z H, et al. Synthesis of quasi-spherical AgBr microcrystal via a simple ion-exchange route[J]. Materials Letters, 2016, 168: 99-102. doi: 10.1016/j.matlet.2016.01.050
|
[11] |
蔡维维, 李蛟, 何静, 等. 磷酸银纳米结构的调控及其光催化性能研究[J]. 无机材料学报, 2017, 32(3): 263-268.
|
[12] |
WANG P F, TANG H, AO Y H, et al. In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation[J]. Journal of Alloys and Compounds, 2016, 688: 1-7.
|
[13] |
ZHU T T, SONG Y H, JI H Y, et al. Synthesis of g-C3N4/Ag3VO4 composites with enhanced photocatalytic activity under visible light irradiation[J]. Chemical Engineering Journal, 2015, 271: 96-105. doi: 10.1016/j.cej.2015.02.018
|
[14] |
LI J D, FANG W, YU C L, et al. Ag-based semiconductor photocatalysts in environmental purification[J]. Applied Surface Science, 2015, 358: 46-56. doi: 10.1016/j.apsusc.2015.07.139
|
[15] |
WANG P, HUANG B B, ZHANG Q Q, et al. Highly efficient visible light plasmonic photocatalyst Ag@ Ag(Br, I)[J]. Chemistry-A European Journal, 2010, 16(33): 10042-10047.
|
[16] |
ZHU M S, CHEN P L, LIU M H. Visible- light- driven Ag/Ag3PO4-based plasmonic photocatalysts: Enhanced photocatalytic performance by hybridization with graphene oxide[J]. Chinese Science Bulletin, 2013, 58(1): 84-91. doi: 10.1007/s11434-012-5367-9
|
[17] |
KUAI L, GENG B Y, CHEN X T, et al. Facile subsequently light- induced route to highly efficient and stable sunlight-driven Ag-AgBr plasmonic photocatalyst[J]. Langmuir, 2010, 26(24): 18723-18727. doi: 10.1021/la104022g
|
[18] |
HU S P, XU C Y, WANG W S, et al. Synthesis of Bi2WO6 hierarchical structures constructed by porous nanoplates and their associated photocatalytic properties under visible light irradiation[J]. Ceramics International, 2014, 40(8): 11689-11698. doi: 10.1016/j.ceramint.2014.03.179
|
[19] |
CAO D D, WANG Q Y, WU Y, et al. Solvothermal synthesis and enhanced photocatalytic hydrogen production of Bi/Bi2MoO6 co-sensitized TiO2 nanotube arrays[J]. Separation and Purification Technology, 2020, 250: 117132. doi: 10.1016/j.seppur.2020.117132
|
[20] |
QU Y Q, CHENG R, SU Q, et al. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods[J]. Journal of the American Chemical Society, 2011, 133(42): 16730-16733. doi: 10.1021/ja204383q
|
[21] |
余长林, 魏龙福, 李家德, 等. GO/Ag3PO4 复合光催化剂的制备, 表征及光催化性能[J]. 物理化学学报, 2015, 31(10): 1932-1938. doi: 10.3866/PKU.WHXB201509064
|
[22] |
MIAO X L, YUE X Y, SHEN X P, et al. Nitrogen-doped carbon dot-modified Ag3PO4/GO photocatalyst with excellent visible-light-driven photocatalytic performance and mechanism insight[J]. Catalysis Science & Technology, 2018, 8(2): 632-641.
|
[23] |
GUEX L, SACCHI B, PEUVOT K, et al. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry[J]. Nanoscale, 2017, 9(27): 9562-9571. doi: 10.1039/C7NR02943H
|
[24] |
CHEN W Y, NIU X J, WANG J. A photocatalyst of graphene oxide (GO)/Ag3PO4 with excellent photocatalytic activity over decabromodiphenyl ether (BDE-209) under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356: 304-311. doi: 10.1016/j.jphotochem.2017.12.038
|
[25] |
WANG P Q, CHEN T, YU B Y, et al. Tollen's-assisted preparation of Ag3PO4/GO photocatalyst with enhanced photocatalytic activity and stability[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 267-274. doi: 10.1016/j.jtice.2016.02.016
|
[26] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
|
[27] |
LIU Y P, FANG L, LU H D, et al. One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4[J]. Applied Catalysis B: Environmental, 2012, 115: 245-252.
|
[28] |
陈晓娟. 磷酸银基复合光催化剂的构筑及其对水中有机污染物降解性能研究[D]. 湘潭: 湘潭大学, 2016.
|
[29] |
汤隽祎, 王宏杰, 赵子龙, 等. 还原氧化石墨烯/磷酸银光催化剂制备及其对卡马西平的降解[J]. 环境工程学报, 2019, 13(6): 1314-1321. doi: 10.12030/j.cjee.201810071
|
[30] |
CHEN F, YANG Q, LI X M, et al. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation[J]. Applied Catalysis B: Environmental, 2017, 200: 330-342. doi: 10.1016/j.apcatb.2016.07.021
|
[31] |
周添红. 马铃薯淀粉加工废水资源化及尾水可见光催化深度净化研究[D]. 兰州: 兰州交通大学, 2018.
|
[32] |
YANG X F, CUI H Y, LI Y, et al. Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance[J]. ACS Catalysis, 2013, 3(3): 363-369. doi: 10.1021/cs3008126
|
[33] |
ZHENG W, YANG W L, HE G W, et al. Facile synthesis of extremely small Ag3PO4 nanoparticles on hierarchical hollow silica sphere (HHSS) for the enhanced visible-light photocatalytic property and stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571: 1-8.
|
[34] |
LIU W F, GAO R Z, YIN Y H, et al. 3D hierarchical porous N-doped carbon nanosheets/MgFe2O4 composite as anode material with excellent cycling stability and rate performance[J]. Scripta Materialia, 2020, 189: 36-41. doi: 10.1016/j.scriptamat.2020.07.060
|
[35] |
MUNK K. The Kubelka-Munk theory of reflectance, zeit[J]. Zeitschrift fuer Technische Physik, 1931(12): 593.
|
[36] |
孙梅香, 刘会应, 刘松, 等. 光电-Fenton体系中羟基自由基生成影响因素分析[J]. 环境工程学报, 2017, 11(6): 3391-3398. doi: 10.12030/j.cjee.201604102
|
[37] |
汤隽祎. 石墨烯基催化剂制备及其光催化处理卡马西平的研究[D]. 深圳: 哈尔滨工业大学(深圳), 2019.
|