[1] LIU W C, DU X Z, TAN H X, et al. Performance of a recirculating aquaculture system using biofloc biofilters with convertible water-treatment efficiencies[J]. Science of the Total Environment, 2020, 754: 141918.
[2] DU X, XU J J, MO Z Y, et al. The performance of gravity-driven membrane (GDM) filtration for roofing rainwater reuse: Implications of roofing rainwater energy and rainwater purification[J]. Science of the Total Environment, 2019, 697: 134181-134187.
[3] ZHANG F, DONG Z, WANG B. Study on first flush effect of rainwater runoff from building roofs[J]. Environmental Pollution & Control, 2011, 33(6): 32-35.
[4] GALLEGO-ALARCON I, FONSECA C R, GARCIA-PULIDO D, et al. Proposal and assessment of an aquaculture recirculation system for trout fed with harvested rainwater[J]. Aquacultural Engineering, 2019, 87: 102021. doi: 10.1016/j.aquaeng.2019.102021
[5] MOHANTY R K. Density-dependent growth performance of Indian major carps in rainwater reservoirs[J]. Journal of Applied Ichthyology, 2004, 20(2): 123-127. doi: 10.1046/j.1439-0426.2003.00532.x
[6] CAMPISANO A, BUTLER D, WARD S, et al. Urban rainwater harvesting systems: Research, implementation and future perspectives[J]. Water Research, 2017, 115: 195-209. doi: 10.1016/j.watres.2017.02.056
[7] ECKART K, MCPHEE Z, BOLISETTI T. Performance and implementation of low impact development: A review[J]. Science of the Total Environment, 2017, 607-608: 413-432. doi: 10.1016/j.scitotenv.2017.06.254
[8] GAO F, LI C, YANG Z H, et al. Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal[J]. Ecological Engineering, 2016, 92: 55-61. doi: 10.1016/j.ecoleng.2016.03.046
[9] LI C, SUN W J, LU Z D, et al. Ceramic nanocomposite membranes and membrane fouling: A review[J]. Water Research, 2020, 175: 115674. doi: 10.1016/j.watres.2020.115674
[10] KRZEMINSKI P, LEVERETTE L, MALAMIS S, et al. Membrane bioreactors: A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects[J]. Journal of Membrane Science, 2016, 527: 207-227.
[11] WANG S X, TIAN J T, WANG Z H, et al. Integrated process for membrane fouling mitigation and organic pollutants removal using copper oxide modified ceramic hollow fiber membrane with in-situ peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 396: 125289. doi: 10.1016/j.cej.2020.125289
[12] DU X, ZHANG K M, XIE B H, et al. Peroxymonosulfate-assisted electro-oxidation/coagulation coupled with ceramic membrane for manganese and phosphorus removal in surface water[J]. Chemical Engineering Journal, 2019, 365: 334-343. doi: 10.1016/j.cej.2019.02.028
[13] DU X, YANG W P, ZHAO J, et al. Peroxymonosulfate-assisted electrolytic oxidation/coagulation combined with ceramic ultrafiltration for surface water treatment: Membrane fouling and sulfamethazine degradation[J]. Journal of Cleaner Production, 2019, 235: 779-788. doi: 10.1016/j.jclepro.2019.07.035
[14] LEE J Y, YANG J S, HAN M, et al. Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources[J]. Science of the Total Environment, 2010, 408(4): 896-905. doi: 10.1016/j.scitotenv.2009.11.001
[15] HAMDAN, SAMI M. A literature based study of stormwater harvesting as a new water resource[J]. Water Science & Technology, 2009, 60(5): 1327-1339.
[16] KORSHIN G, CHOW C W K, FABRIS R, et al. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights[J]. Water Research, 2009, 43(6): 1541-1548. doi: 10.1016/j.watres.2008.12.041
[17] DASHTBAN L, BARBEAU B. Understanding ultrafiltration fouling of ceramic and polymeric membranes caused by oxidized iron and manganese in water treatment[J]. Journal of Membrane Science, 2016, 516: 1-12. doi: 10.1016/j.memsci.2016.06.003
[18] CHELLAM S, SARI M A. Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control[J]. Journal of Hazardous Materials, 2016, 304: 490-501. doi: 10.1016/j.jhazmat.2015.10.054
[19] GONZALEZ-OLMOS R, PENADÉS A, GARCIA G. Electro-oxidation as efficient pretreatment to minimize the membrane fouling in water reuse processes[J]. Journal of Membrane Science, 2018, 552: 124-131. doi: 10.1016/j.memsci.2018.01.041
[20] HENDERSON R K, BAKER A, MURPHY K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43(4): 863-881. doi: 10.1016/j.watres.2008.11.027
[21] SPENCER R G M, BOLTON L, BAKER A. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations[J]. Water Research, 2007, 41(13): 2941-2950. doi: 10.1016/j.watres.2007.04.012
[22] GHERNAOUT D. Advanced oxidation phenomena in electrocoagulation process: A myth or a reality?[J]. Desalination & Water Treatment, 2013, 51(40/41/42): 7536-7554.
[23] ISLAM D U. Electrocoagulation (EC) technology for wastewater treatment and pollutants removal[J]. Sustainable Water Resources Management, 2019, 5(1): 359-380. doi: 10.1007/s40899-017-0152-1
[24] KIM T, KIM T K, ZOH K D. Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes[J]. Journal of Water Process Engineering, 2020, 33: 101-109.
[25] ZHAO H Z, YANG W, ZHU J, et al. Defluoridation of drinking water by combined electrocoagulation: Effects of the molar ratio of alkalinity and fluoride to Al(III)[J]. Chemosphere, 2009, 74(10): 1391-1395. doi: 10.1016/j.chemosphere.2008.11.062