[1] |
ABRUSAN G, MARSH J A. Ligands and receptors with broad binding capabilities have common structural characteristics: An antibiotic design perspective[J]. Journal of Medicinal Chemistry, 2019, 62(21): 9357-9374. doi: 10.1021/acs.jmedchem.9b00220
|
[2] |
SHENG F, LING J, WANG C, et al. Rapid hydrolysis of penicillin antibiotics mediated by adsorbed zinc on goethite surfaces[J]. Environmental Science & Technology, 2019, 53(18): 10705-10713.
|
[3] |
WANG H T, ZHU Y G, CHI Q, et al. Arsenic and sulfamethoxazole increase the incidence of antibiotic resistance genes in the gut of earthworm[J]. Environmental Science & Technology, 2019, 53(17): 10445-10453.
|
[4] |
JING X R, WANG Y Y, LIU W J, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar[J]. Chemical Engineering Journal, 2014, 248: 168-174. doi: 10.1016/j.cej.2014.03.006
|
[5] |
JOSE R U, CARLA G P, MANUEL S P, et al. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents[J]. Journal of Environmental Management, 2013, 131: 16-24. doi: 10.1016/j.jenvman.2013.09.024
|
[6] |
YAN Y, ZHENG W, HUANG D, et al. Hierarchical multi-porous carbonaceous beads prepared with nano-CaCO3 in-situ encapsulated hydrogels for efficient batch and column removal of antibiotics from water[J]. Microporous and Mesoporous Materials, 2020, 293: 109830. doi: 10.1016/j.micromeso.2019.109830
|
[7] |
GUO R, CAI X, LIU H, et al. In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal[J]. Environmental Science & Technology, 2019, 53(5): 2705-2712.
|
[8] |
CHEN F, GONG A S, ZHU M, et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment[J]. ACS Nano, 2017, 11(4): 4275. doi: 10.1021/acsnano.7b01350
|
[9] |
HOU D, LI T, CHEN X, et al. Hydrophobic nanostructured wood membrane for thermally efficient distillation[J]. Science Advances, 2019, 5(8): eaaw3203. doi: 10.1126/sciadv.aaw3203
|
[10] |
BRANCIFORTI M C, YANGH S, HAFEZ I, et al. Morphological and rheological behaviors of micro-nanofibrillated NaOH-pretreated aspen wood[J]. Cellulose, 2019, 26: 4601-4614. doi: 10.1007/s10570-019-02389-x
|
[11] |
JI H, XIANG Z, QI H, et al. Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid[J]. Green Chemistry, 2019, 21: 1956-1964. doi: 10.1039/C8GC03493A
|
[12] |
SAFARI A, KARIMI K, SHAFIEI M. Dilute alkali pretreatment of softwood pine: A biorefinery approach[J]. Bioresource Technology, 2017, 234: 67-76. doi: 10.1016/j.biortech.2017.03.030
|
[13] |
CHEN Z, XIAO X, CHEN B, et al. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental Science & Technology, 2015, 49(1): 309-317.
|
[14] |
WEN J, YIN Y, PENG X, et al. Using H2O2 to selectively oxidize recyclable cellulose yarn with high carboxyl content[J]. Cellulose, 2019, 26: 2699-2713. doi: 10.1007/s10570-018-2217-1
|
[15] |
ASCHERMANN G, NEUBERT L, ZITZSCHMANN F, et al. Impact of different DOM size fractions on the desorption of organic micropollutants from activated carbon[J]. Water Research, 2019, 161(15): 161-170.
|
[16] |
LI Z, SCHULZ L, ACKLEY C, et al. Adsorption of tetracycline on kaolinite with pH-dependent surface charges[J]. Journal of Colloid and Interface Science, 2010, 351(1): 254-260. doi: 10.1016/j.jcis.2010.07.034
|
[17] |
LIU M M, HOU L A, YU S L, et al. MCM-41 impregnated with a zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution[J]. Chemical Engineering Journal, 2013, 223(100): 678-687.
|
[18] |
XU L P, LI H, MITCH W A, et al. Enhanced phototransformation of tetracycline at smectite clay surfaces under simulated sunlight via a lewis-base catalyzed alkalization mechanism[J]. Environmental Science & Technology, 2018, 53(2): 710-718.
|
[19] |
ZHAO Y, GENG J, WANG X, et al. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects[J]. Ecotoxicology, 2011, 20(5): 1141-1147. doi: 10.1007/s10646-011-0665-6
|
[20] |
MAGED A, IQBAL J, KHARBISH S, et al. Tuning tetracycline removal from aqueous solution onto activated 2: 1 layered clay mineral: Characterization, sorption and mechanistic studies[J]. Journal of Hazardous Materials, 2019, 384: 121320.
|
[21] |
ZHAO R, MA T, ZHAO S, et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water[J]. Chemical Engineering Journal, 2020, 382: 122893. doi: 10.1016/j.cej.2019.122893
|