[1] |
U. S. Environmental Protection Agency, National Center for Environmental Assessment. Integrated science assessment for particulate matter[S]. Washington, DC, 2009.
|
[2] |
中华人民共和国国家质量监督检验检疫总局, 中国国家环境保护部. 环境空气质量标准: GB 3095-2012[S]. 北京: 中国环境科学出版社, 2012.
|
[3] |
KELLY F J. Oxidative stress: Its role in air pollution and adverse health effects[J]. Occupational and Environmental Medicine, 2003, 60(8): 612-616. doi: 10.1136/oem.60.8.612
|
[4] |
SEE S W, WANG Y H, BALASUBRAMANIAN R. Contrasting reactive oxygen species and transition metal concentrations in combustion aerosols[J]. Environmental Research, 2007, 103(3): 317-324. doi: 10.1016/j.envres.2006.08.012
|
[5] |
MARTINET W, MEYER G R, HERMAN A G, et al. Reactive oxygen species induce RNA damage in human atherosclerosis[J]. European Journal of Clinical Investigation, 2014, 34(5): 323-327.
|
[6] |
ASHLEY K, HOWE A M, DEMANGE M, et al. Sampling and analysis considerations for the determination of hexavalent chromium in workplace air[J]. Journal of Environmental Monitoring, 2003, 5(5): 707-716. doi: 10.1039/b306105c
|
[7] |
PECHOVA A, PAVLATA L. Chromium as an essential nutrient: A review[J]. Veterinarni Medicina, 2007, 52(1): 1-18.
|
[8] |
HARRISON R M, JONES A M, GIETL J, et al. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements[J]. Environmental Science & Technology, 2012, 46(12): 6523-6529.
|
[9] |
FANG T, VERMA V, BATES J T, et al. Oxidative potential of ambient water-soluble PM2.5, measured by dithiothreitol (DTT) and ascorbic acid (AA) assays in, the southeastern united states: Contrasts in sources and health, associations[J]. Atmospheric Chemistry & Physics, 2015, 15(21): 30609-30644.
|
[10] |
WIOLETTA R K. Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content[J]. Air Quality Atmosphere & Health, 2016, 9(5): 533-550.
|
[11] |
VENTER A D, BEUKES J P, PIETER G V Z, et al. Regional atmospheric Cr(VI) pollution from the bushveld complex, South Africa[J]. Atmospheric Pollution Research, 2016, 7(5): 762-767. doi: 10.1016/j.apr.2016.03.009
|
[12] |
BUTLER O T, Cairns W R, COOKC J M, et al. Atomic spectrometry update: A review of advances in environmental analysis[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(1): 11-57. doi: 10.1039/C6JA90058E
|
[13] |
JAESOOL S, MIGYUNG C, RAMA J, et al. Analysis and speciation of chromium in environmental matrices by various analytical techniques[J]. Asian Journal of Chemistry, 2013, 25(8): 4125-4136. doi: 10.14233/ajchem.2013.14625
|
[14] |
HENNESSY D J, REID G R, SMITH F E, et al. Ferene: A new spectrophotometric reagent for iron[J]. Canadian Journal of Chemistry, 1984, 62(62): 721-724.
|
[15] |
KUATE M, CONDE M A, NCHIMI K N, et al. Characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of (E)-2-(4-dimethylbenzydimino)-glycylglycine, (Glygly-DAB) a Schiff base derived from 4-dimethylaminobenzaldehyde and glycylglycine[J]. International Journal of Organic Chemistry, 2018, 8(3): 298-308. doi: 10.4236/ijoc.2018.83022
|
[16] |
MAJESTIC B J, SCHAUER J J, SHAFER M M. Development of a manganese speciation method for atmospheric aerosols in biologically and environmentally relevant fluids[J]. Aerosol Science and Technology, 2007, 41(10): 925-933. doi: 10.1080/02786820701564657
|
[17] |
CHAPARRO L, FERRER L, LEAL L O, et al. Automatic flow analysis method to determine traces of Mn2+ in sea and drinking waters by a kinetic catalytic process using LWCC-spectrophotometric detection[J]. Talanta, 2016, 148: 583-588. doi: 10.1016/j.talanta.2015.10.050
|
[18] |
KHLYSTOV A, MA Y. An on-line instrument for mobile measurements of the spatial variability of hexavalent and trivalent chromium in urban air[J]. Atmospheric Environment, 2006, 40(40): 8088-8093.
|
[19] |
ARNAUD S H, ANNETTE H. Hexavalent chromium quantification in solution: comparing direct UV-visible spectrometry with 1, 5-diphenylcarbazide colorimetry[J]. Comptes Rendus Chimie, 2018, 21(9): 890-896. doi: 10.1016/j.crci.2018.05.002
|
[20] |
U. S. Environmental Protection Agency. Collection and analysis of hexavalent chromium in ambient air[EB/OL]. [2020-04-11]. https://www3.epa.gov/ttn/amtic/files/ambient/airtox/hexavalent-chromium-paper-06.pdf, 2007.
|
[21] |
WEYER S, SCHWIETERS J B. High precision iron isotope measurements with high mass resolution MC-ICPMS[J]. International Journal of Mass Spectrometry, 2003, 226(3): 355-368. doi: 10.1016/S1387-3806(03)00078-2
|
[22] |
HADIOUI M, MERDZAN V, WILKINSON K J. Detection and characterization of ZnO nanoparticles in surface and waste waters using single particle ICPMS[J]. Environmental Science and Technology, 2015, 49(10): 6141-6148. doi: 10.1021/acs.est.5b00681
|
[23] |
HUANG L, YU C H, HOPKE P K, et al. Measurement of soluble and total hexavalent chromium in the ambient airborne particles in new jersey[J]. Aerosol and Air Quality Research, 2014, 14(7): 1939-1949. doi: 10.4209/aaqr.2013.10.0312
|
[24] |
MENG Q, FAN Z, BUCKLEY B, et al. Development and evaluation of a method for hexavalent chromium in ambient air using IC-ICP-MS[J]. Atmospheric Environment, 2011, 45(12): 2021-2027. doi: 10.1016/j.atmosenv.2011.02.009
|
[25] |
GEORGI J C, SOMMER Y L, WARD C D, et al. Biomonitoring method for the analysis of chromium and cobalt in human whole blood using inductively coupled plasma-kinetic energy discrimination-mass spectrometry (ICP-KED-MS)[J]. Analytical Methods, 2017, 9(23): 3464-3476. doi: 10.1039/C7AY00430C
|
[26] |
SUDHANSHU K, GOPALA A S, BIGHNARAJ S, et al. Understanding the influence of open-waste burning on urban aerosols using metal tracers and lead isotopic composition[J]. Aerosol and Air Quality Research, 2018, 18(9): 2433-2446. doi: 10.4209/aaqr.2017.11.0510
|
[27] |
QI L, CHEN M, GE X, et al. Seasonal variations and sources of 17 aerosol metal elements in Suburban Nanjing, China[J]. Atmosphere, 2016, 7(12): 153-174. doi: 10.3390/atmos7120153
|
[28] |
秦鑫, 张泽锋, 李艳伟, 等. 南京北郊重金属气溶胶粒子来源分析[J]. 环境科学, 2016, 37(12): 4467-4474.
|
[29] |
SCHROEDER W H, DOBSON M, KANE D M, et al. Toxic trace elements associated with airborne particulate matter: A review[J]. Air Repair, 1987, 37(11): 1267-1285.
|
[30] |
OGUNDELE L T, OWOADE O K, HOPKE P K, et al. Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria[J]. Environmental Research, 2017, 156: 320-325. doi: 10.1016/j.envres.2017.03.051
|
[31] |
BEUKES J P, DU PREEZ S P, VAN ZYL P G, et al. Review of Cr(VI) environmental practices in the chromite mining and smelting industry: Relevance to development of the ring of fire, canada[J]. Journal of Cleaner Production, 2017, 165: 874-889. doi: 10.1016/j.jclepro.2017.07.176
|
[32] |
张晓茹, 孔少飞, 银燕, 等. 亚青会期间南京大气PM2.5中重金属来源及风险[J]. 中国环境科学, 2016, 36(1): 1-11. doi: 10.3969/j.issn.1000-6923.2016.01.001
|
[33] |
GUO L L, LYU Y L, YANG Y Y. Concentrations and chemical forms of heavy metals in the bulk atmospheric deposition of Beijing, China[J]. Environmental Science and Pollution Research, 2017, 24(35): 27356-27365. doi: 10.1007/s11356-017-0324-4
|
[34] |
HAN X, LU X. Spatial distribution, environmental risk and source of heavy metals in street dust from an industrial city in semi-arid area of China[J]. Archives of Environmental Protection, 2017, 43(2): 10-19. doi: 10.1515/aep-2017-0013
|