[1] KUBA T, MURNLEITNER E, LOOSDRECHT M C M V, et al. A metabolic model for biological phosphorus removal by denitrifying organisms[J]. Biotechnology and Bioengineering, 1996, 52(6): 685-695. doi: 10.1002/(SICI)1097-0290(19961220)52:6<685::AID-BIT6>3.0.CO;2-K
[2] WANG Y, ZHOU S, YE L, et al. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors[J]. Water Research, 2014, 67: 33-45. doi: 10.1016/j.watres.2014.08.052
[3] 张建华, 彭永臻, 张淼, 等. 不同电子受体配比对反硝化除磷特性及内碳源转化利用的影响[J]. 化工学报, 2015, 66(12): 5045-5053.
[4] 祝贵兵, 彭永臻, 郭建华. 短程硝化反硝化生物脱氮技术[J]. 哈尔滨工业大学学报, 2008, 40(10): 1552-1557. doi: 10.3321/j.issn:0367-6234.2008.10.009
[5] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[6] 孙艺齐, 卞伟, 李军, 等. 15 ℃ SBBR短程硝化快速启动和稳定运行性能[J]. 环境科学, 2019, 40(5): 1-11.
[7] MULDER J W, LOOSDRECHT M C M V, HELLINGA C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001, 43(11): 127-134. doi: 10.2166/wst.2001.0675
[8] HELLINGA C, SCHELLEN A A J C, MULDER J W, et al. The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology, 1998, 37(9): 135-142. doi: 10.2166/wst.1998.0350
[9] 张功良, 李冬, 张肖静, 等. 低温低氨氮SBR短程硝化稳定性实验研究[J]. 中国环境科学, 2014, 34(3): 610-616.
[10] 孙洪伟, 尤永军, 赵华南, 等. 游离氨对硝化菌活性的抑制及可逆性影响[J]. 中国环境科学, 2015, 35(1): 95-100.
[11] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852.
[12] 张婷, 吴鹏, 沈耀良, 等. CSTR和MBR反应器的短程硝化快速启动[J]. 环境科学, 2017, 38(8): 3399-3405.
[13] RUBIO-RINCÓN F J, LOPEZ-VAZQUEZ C M, WELLES L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164. doi: 10.1016/j.watres.2017.05.001
[14] RIBERA-GUARDIA A, MARQUES R, ARANGIO C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology, 2016, 219: 106-113. doi: 10.1016/j.biortech.2016.07.092
[15] ZHANG S H, HUANG Y, HUA Y M. Denitrifying dephosphatation over nitrite: Effects of nitrite concentration, organic carbon, and pH[J]. Bioresource Technology, 2010, 101(11): 3870-3875. doi: 10.1016/j.biortech.2009.12.134
[16] DUAN H, GAO S, LI X, et al. Improving wastewater management using free nitrous acid (FNA)[J]. Water Research, 2020, 171: 115382. doi: 10.1016/j.watres.2019.115382
[17] ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. doi: 10.1016/j.watres.2011.06.025
[18] ZENG W, WANG A, ZHANG J, et al. Enhanced biological phosphate removal from wastewater and clade-level population dynamics of “Candidatus Accumulibacter phosphatis” under free nitrous acid inhibition: Linked with detoxication[J]. Chemical Engineering Journal, 2016, 296: 234-242. doi: 10.1016/j.cej.2016.03.063
[19] ZHOU Y, GANDA L, LIM M, et al. Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions[J]. Bioresource Technology, 2012, 116: 340-347. doi: 10.1016/j.biortech.2012.03.111