[1] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
[2] ZHANG M, HE L Y, LIU Y S, et al. Fate of veterinary antibiotics during animal manure composting[J]. Science of the Total Environment, 2019, 650: 1363-1370. doi: 10.1016/j.scitotenv.2018.09.147
[3] YU Y S, CHEN L J, FANG Y, et al. High temperatures can effectively degrade residual tetracyclines in chicken manure through composting[J]. Journal of Hazardous Materials, 2019, 380: 120862. doi: 10.1016/j.jhazmat.2019.120862
[4] LIAO H P, LU X M, RENSING C, et al. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge[J]. Environmental Science & Technology, 2017, 52(1): 266-276.
[5] WU X F, WEI Y S, ZHENG J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology, 2011, 102(10): 5924-5931. doi: 10.1016/j.biortech.2011.03.007
[6] MBARECHE H, VEILLETTE M, BONIFAIT L, et al. A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants[J]. Science of the Total Environment, 2017, 601-602: 1306-1314. doi: 10.1016/j.scitotenv.2017.05.235
[7] QI Y F, WU S Q, XI F, et al. Performance of a coupled micro-electrolysis, anaerobic and aerobic system for oxytetracycline (OTC) production wastewater treatment[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(5): 1290-1298.
[8] KARPOV M, SEIWERT B, MORDEHAY V, et al. Transformation of oxytetracycline by redox-active Fe(III) and Mn(IV) containing minerals: Processes and mechanisms[J]. Water Research, 2018, 145: 136-145. doi: 10.1016/j.watres.2018.08.015
[9] ÇELIK A, CASEY E, HASAR H. Degradation of oxytetracycline under autotrophic nitrifying conditions in a membrane aerated biofilm reactor and community fingerprinting[J]. Journal of Hazardous Materials, 2018, 356: 26-33. doi: 10.1016/j.jhazmat.2018.05.040
[10] HARRABI M, ALEXANDRINO D A M, ALOULOU F, et al. Biodegradation of oxytetracycline and enrofloxacin by autochthonous microbial communities from estuarine sediments[J]. Science of the Total Environment, 2019, 648: 962-972. doi: 10.1016/j.scitotenv.2018.08.193
[11] LI K X, YEDILER A, YANG M, et al. Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products[J]. Chemosphere, 2008, 72(3): 473-478. doi: 10.1016/j.chemosphere.2008.02.008
[12] USLU M O, BALCIOGLU I A. Ozonation of animal wastes containing oxytetracycline[J]. Ozone, 2008, 30(4): 290-299.
[13] WANG Y, ZHANG H, ZHANG J H, et al. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor[J]. Journal of Hazardous Materials, 2011, 192(1): 35-43.
[14] ZENG Z, ZOU H, LI X, et al. Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed[J]. Chemical Engineering Journal, 2013, 229: 404-411. doi: 10.1016/j.cej.2013.06.018
[15] CHEEMA W A, ANDERSEN H R, KAARSHOLM K M S. Improved DBP elimination from swimming pool water by continuous combined UV and ozone treatment[J]. Water Research, 2018, 147: 214-222. doi: 10.1016/j.watres.2018.09.030
[16] COSGUN S, SEMERCI N. Combined and individual applications of ozonation and microwave treatment for waste activated sludge solubilization and nutrient release[J]. Journal of Environmental Management, 2019, 241: 76-83.
[17] ZHEN Y, SUI M H, YUAN B J, et al. Degradation of ibuprofen using ozone combined with peroxymonosulfate[J]. Environmental Science Water Research & Technology, 2017, 3(5): 960-969.
[18] QIAO J J, LUO S, YANG P Z, et al. Degradation of nitrobenzene-containing wastewater by ozone/persulfate oxidation process in a rotating packed bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 1-8. doi: 10.1016/j.jtice.2019.02.015
[19] ABU AMR S S, AZIZ H A, ADLAN M N, et al. Pretreatment of stabilized leachate using ozone/persulfate oxidation process[J]. Chemical Engineering Journal, 2013, 221: 492-499. doi: 10.1016/j.cej.2013.02.038
[20] CONG J, WEN G, HUANG T L, et al. Study on enhanced ozonation degradation of para-chlorobenzoic acid by peroxymonosulfate in aqueous solution[J]. Chemical Engineering Journal, 2015, 264: 399-403. doi: 10.1016/j.cej.2014.11.086
[21] ZHONG Q F, LIN Q T, HUANG R L, et al. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar[J]. Chemical Engineering Journal, 2020, 380: 122608. doi: 10.1016/j.cej.2019.122608
[22] ZHANG S, ROUGE V, GUTIERREZ L, et al. Reactivity of chromophoric dissolved organic matter (CDOM) to sulfate radicals: Reaction kinetics and structural transformation[J]. Water Research, 2019, 163: 114846. doi: 10.1016/j.watres.2019.07.013
[23] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
[24] XUAN R, ARISI L, WANG Q, et al. Hydrolysis and photolysis of oxytetracycline in aqueous solution[J]. Journal of Environmental Science and Health Part B, 2010, 45(1): 73-81.
[25] JIN X, XU H Z, QIU S S, et al. Direct photolysis of oxytetracycline: Influence of initial concentration, pH and temperature[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332: 224-231. doi: 10.1016/j.jphotochem.2016.08.032
[26] LI Z J, QI W L, FENG Y, et al. Degradation mechanisms of oxytetracycline in the environment[J]. Journal of Integrative Agriculture, 2019, 18(9): 1953-1960. doi: 10.1016/S2095-3119(18)62121-5
[27] ZHANG B T, ZHANG Y, TENG Y G, et al. Sulfate radical and its application in decontamination technologies[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(16): 1756-1800. doi: 10.1080/10643389.2014.970681
[28] CHEN Y Q, DENG P Y, XIE P C, et al. Heat-activated persulfate oxidation of methyl- and ethyl-parabens: Effect, kinetics, and mechanism[J]. Chemosphere, 2017, 168: 1628-1636. doi: 10.1016/j.chemosphere.2016.11.143
[29] XIE P C, MA J, LIU W, et al. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals[J]. Water Research, 2015, 69: 223-233. doi: 10.1016/j.watres.2014.11.029
[30] NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chemical Reviews, 2017, 117(17): 11302-11336. doi: 10.1021/acs.chemrev.7b00161
[31] KHAN M H, BAE H, JUNG J. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway[J]. Journal of Hazardous Materials, 2010, 181(1): 659-665.
[32] WANG X C, SHEN J M, KANG J, et al. Mechanism of oxytetracycline removal by aerobic granular sludge in SBR[J]. Water Research, 2019, 161: 308-318. doi: 10.1016/j.watres.2019.06.014
[33] ZHANG Y H, SHI J, XU Z W, et al. Degradation of tetracycline in a schorl/H2O2 system: Proposed mechanism and intermediates[J]. Chemosphere, 2018, 202: 661-668. doi: 10.1016/j.chemosphere.2018.03.116
[34] DALMÁZIO I, ALMEIDA M O, AUGUSTI R, et al. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2007, 18(4): 679-687. doi: 10.1016/j.jasms.2006.12.001