[1] DUAN X G, AO Z M, SUN H Q, et al. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4169-4178.
[2] WANG Y X, SUN H Q, ANG H M, et al. Facile synthesis of hierarchically structured magnetic MnO2/ZnFe2O4 hybrid materials and their performance in heterogeneous activation of peroxymonosulfate[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 19914-19923.
[3] CAO H B, XING L L, WU G G, et al. Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid[J]. Applied Catalysis B: Environmental, 2014, 146(1): 169-176.
[4] KASPRZYK-HORDERN B, ZIółEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental, 2003, 46(4): 639-669. doi: 10.1016/S0926-3373(03)00326-6
[5] NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 27-42.
[6] LEGUBE B, KARPEL VEL LEITNER N. Catalytic ozonation: A promising advanced oxidation technology for water treatment[J]. Catalysis Today, 1999, 53(1): 61-72. doi: 10.1016/S0920-5861(99)00103-0
[7] GUO Y, SONG Z L, XU B B, et al. A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination[J]. Journal of Hazardous Materials, 2018, 344(15): 1229-1239.
[8] SONG Z L, ZHANG Y T, LIU C, et al. Insight into ·OH and $ {\rm{O}}_2^{ \cdot - }$ formation in heterogeneous catalytic ozonation by delocalized electrons and surface oxygen-containing functional groups in layered-structure nanocarbons[J]. Chemical Engineering Journal, 2019, 357: 655-666. doi: 10.1016/j.cej.2018.09.182
[9] ZHI C Y, BANDO Y S, TANG C C, et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Advanced Materials, 2009, 21(28): 2889-2893. doi: 10.1002/adma.200900323
[10] BUTLER S Z, HOLLEN S M, CAO L Y, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano, 2013, 7(4): 2898-2926. doi: 10.1021/nn400280c
[11] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. doi: 10.1038/nmat1849
[12] MAIYALAGAN T, WANG X, WANG H B. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794. doi: 10.1021/cs200652y
[13] MAMBA G, MISHRA A K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B: Environmental, 2016, 198: 347-377. doi: 10.1016/j.apcatb.2016.05.052
[14] WANG Q, CHEN A S, WANG X F, et al. Fe-species-loaded graphitic carbon nitride with enhanced photocatalytic performance under visible-light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2016, 420: 159-166. doi: 10.1016/j.molcata.2016.04.020
[15] LIU B C, QIAO M, WANG Y B, et al. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation[J]. Chemosphere, 2017, 189: 115-122. doi: 10.1016/j.chemosphere.2017.08.169
[16] ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis[J]. Energy & Environmental Science, 2012, 5(5): 6717-6731.
[17] WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science, 2016, 391: 72-123.
[18] MOLINS-DELGADO D, DIAZ-CRUZ M S, BARCELO D. Ecological risk assessment associated to the removal of endocrine-disrupting parabens and benzophenone-4 in wastewater treatment[J]. Journal of Hazardous Materials, 2016, 310(5): 143-151.
[19] RODIL R, QUINTANA J B, LOPEZ-MAHIA P, et al. Multiclass determination of sunscreen chemicals in water samples by liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2008, 80(4): 1307-1315. doi: 10.1021/ac702240u
[20] KASPRZYK-HORDERN B, DINSDALE R M, GUWY A J. The removal of pharmaceuticals personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters[J]. Water Research, 2009, 43(2): 363-380. doi: 10.1016/j.watres.2008.10.047
[21] JHUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. doi: 10.1021/ja01539a017
[22] ZHU H Y, JIANG R, HUANG S H, et al. Novel magnetic NiFe2O4/multi-walled carbon nanotubes hybrids: Facile synthesis, characterization, and application to the treatment of dyeing wastewater[J]. Ceramics International, 2015, 41(9): 11625-11631. doi: 10.1016/j.ceramint.2015.05.122
[23] DEVI L G, and SRINIVAS M. Hydrothermal synthesis of reduced graphene oxide-CoFe2O4 heteroarchitecture for high visible light photocatalytic activity: Exploration of efficiency, stability and mechanistic pathways[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3243-3255. doi: 10.1016/j.jece.2017.06.023
[24] WANG J G, CHEN Z M, ZHAI G J, et al. Boosting photocatalytic activity of WO3 nanorods with tailored surface oxygen vacancies for selective alcohol oxidations[J]. Applied Surface Science, 2018, 462: 760-771. doi: 10.1016/j.apsusc.2018.08.181
[25] WANG Y X, CHEN L L, CAO H B, et al. Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3-δ perovskite composites for aqueous organic pollutants decontamination[J]. Applied Catalysis B: Environmental, 2019, 245: 546-554. doi: 10.1016/j.apcatb.2019.01.025
[26] LI L, JIANG G X, MA J M. CuMn2O4/graphene nanosheets as excellent anode for lithium-ion battery[J]. Materials Research Bulletin, 2018, 104(8): 53-59.
[27] CHEN Y H, TIAN Y L, QIU Y Z, et al. Synthesis and superior cathode performance of sandwiched LiMn2O4@rGO nanocomposites for lithium-ion batteries[J]. Materials Today Advances, 2019, 1: 100001. doi: 10.1016/j.mtadv.2018.12.001
[28] AKHUNDI A, HABIBI-YANGJEH A. Graphitic carbon nitride nanosheets decorated with CuCr2O4 nanoparticles: Novel photocatalysts with high performances in visible light degradation of water pollutants[J]. Journal of Colloid and Interface Science, 2017, 504: 697-710. doi: 10.1016/j.jcis.2017.06.025
[29] NIE Y L, HU C, YANG L, et al. Inhibition mechanism of $ {\rm{BrO}}_3^ - $ formation over MnOx/Al2O3 during the catalytic ozonation of 2, 4-dichlorophenoxyacetic acid in water[J]. Separation and Purification Technology, 2013, 117: 41-45. doi: 10.1016/j.seppur.2013.03.045
[30] NIE Y L, LI N N, HU C. Enhanced inhibition of bromate formation in catalytic ozonation of organic pollutants over Fe-Al LDH/Al2O3[J]. Separation and Purification Technology, 2015, 151: 256-261. doi: 10.1016/j.seppur.2015.07.057
[31] LI W W, LU X W, XU K, et al. Cerium incorporated MCM-48 (Ce-MCM-48) as a catalyst to inhibit bromate formation during ozonation of bromide-containing water: Efficacy and mechanism[J]. Water Research, 2015, 86: 2-8. doi: 10.1016/j.watres.2015.05.052
[32] ZHANG Y T, XIA Y J, LI Q W, et al. Synchronously degradation benzotriazole and elimination bromate by perovskite oxides catalytic ozonation: Performance and reaction mechanism[J]. Separation and Purification Technology, 2018, 197: 261-270. doi: 10.1016/j.seppur.2018.01.019
[33] ZHANG Y T, LI Q W, LONG Y J, et al. Catalytic ozonation benefit from the enhancement of electron transfer by the coupling of g-C3N4 and LaCoO3: Discussion on catalyst fabrication and electron transfer pathway[J]. Applied Catalysis B: Environmental, 2019, 254: 569-579. doi: 10.1016/j.apcatb.2019.05.019