[1] YU W, YANG Y, GRAHAM N. Evaluation of ferrate as a coagulant aid/oxidant pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water treatment[J]. Chemical Engineering Journal, 2016, 298: 234-242. doi: 10.1016/j.cej.2016.03.080
[2] WANG W Q, WA Y C, ZHANG X F, et al. Whey protein membrane processing methods and membrane fouling mechanism analysis[J]. Food Chemistry, 2019, 289: 468-481. doi: 10.1016/j.foodchem.2019.03.086
[3] DHARUPANEEDI S P, NATARAJ S K, NADAGOUDA M, et al. Membrane-based separation of potential emerging pollutants[J]. Separation and Purification Technology, 2019, 210: 850-866.
[4] ARHIN S G, BANADDA N, KOMAKECH A J, et al. Application of hybrid coagulation-ultrafiltration for decentralized drinking water treatment: Impact on flux water quality and costs[J]. Water Science and Technology Water Supply, 2019, 19(7): 2163-2171. doi: 10.2166/ws.2019.097
[5] TABATABAI S, SCHIPPERS J C, KENNEDY M D. Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis[J]. Water Research, 2014, 59: 283-294.
[6] BODZEK M. Membrane separation techniques removal of inorganic and organic admixtures and impurities from water environment: Review[J]. Archives of Environmental Protection, 2019, 45(4): 4-19.
[7] YU W Z, LIU M J, GRAHAM N J D. Combining magnetic ion exchange media and microsand before coagulation as pretreatment for submerged ultrafiltration: Biopolymers and small molecular weight organic matter[J]. American Chemical Society Sustainable Chemistry & Engineering, 2019, 7(22): 18566-18573.
[8] XING J, WANG H, CHENG X, et al. Application of low-dosage UV/chlorine pre-oxidation for mitigating ultrafiltration (UF) membrane fouling in natural surface water treatment[J]. Chemical Engineering Journal, 2018, 344: 62-70. doi: 10.1016/j.cej.2018.03.052
[9] GUO J, SHI J, WANG K L. The effect of pre-ozonation on UF membrane fouling by the size fractioned sewage effluent[J]. Desalination and Water Treatment, 2017, 87: 91-100. doi: 10.5004/dwt.2017.21071
[10] GIBRRT O, PANGES N, BERNAT X, et al. Removal of dissolved organic carbon and bromide by a hybrid MIEX-ultrafiltration system: Insight into the behaviour of organic fractions[J]. Chemical Engineering Journal, 2017, 312: 59-67. doi: 10.1016/j.cej.2016.11.120
[11] LEVCHUK I, RUEDA MARQUEZ J J, SILLANPAA M. Removal of natural organic matter (NOM) from water by ion exchange: A review[J]. Chemosphere, 2018, 192: 90-104. doi: 10.1016/j.chemosphere.2017.10.101
[12] 杨晓明, 张朝晖, 王亮, 等. MIEX和PAC对微污染水源水的水质净化效果比较[J]. 化工学报, 2016, 67(4): 1505-1511.
[13] RITSON J P, GRAHAM N J D, TEMPLETON M R, et al. The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: A UK perspective[J]. Science of the Total Environment, 2014, 473: 714-730.
[14] YANG Y, DING Q, YANG M, et al. Magnetic ion exchange resin for effective removal of perfluorooctanoate from water: Study of a response surface methodology and adsorption performances[J]. Environment Science Pollution Research Internation, 2018, 25(29): 29267-29278.
[15] AFTAB B, HUR J. Unraveling complex removal behavior of landfill leachate upon the treatments of Fenton oxidation and MIEX((R)) via two-dimensional correlation size exclusion chromatography (2D-CoSEC)[J]. Journal Hazardous Materials, 2019, 362: 36-44. doi: 10.1016/j.jhazmat.2018.09.017
[16] CHEN Y Y, XU W Y, ZHU H J, et al. Effect of turbidity on micropollutant removal and membrane fouling by MIEX/ultrafiltration hybrid process[J]. Chemosphere, 2019, 216: 488-498. doi: 10.1016/j.chemosphere.2018.10.148
[17] IMBROGNO A, BISCARRAT J, SCHAFER A I. Estradiol uptake in a combined magnetic ion exchange-ultrafiltration (MIEX-UF) process during water treatment[J]. Current Pharmaceutical Design, 2017, 23(2): 328-337.
[18] GOODWILL J E, JIANG Y, RECKHOW D A, et al. Characterization of particles from ferrate preoxidation[J]. Environment Science Technology, 2015, 49(8): 4955-4962. doi: 10.1021/acs.est.5b00225
[19] CHEN G, LAM W W Y, LO P K, et al. Mechanism of water oxidation by Ferrate(VI) at pH 7-9[J]. Chemistry- A European Journal, 2018, 24(70): 18735-18742. doi: 10.1002/chem.201803757
[20] ZHENG L, DENG Y. Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment[J]. Water Research, 2016, 93: 172-178. doi: 10.1016/j.watres.2016.02.015
[21] VIRENDER K. SHARMA S K M, NASRI N. Oxidation of sulfonamide antimicrobials by ferrate(VI)[Fe(VI) $ {\rm{O}}_4^{2 - } $ ][J]. Environment Science & Technology, 2006, 40(23): 6.
[22] KOZIK V, BARBUSINSKI K, THOMAS M, et al. Taguchi method and response surface methodology in the treatment of highly contaminated tannery wastewater using commercial potassium ferrate[J]. Materials, 2019, 12(22).
[23] YUX W, LICHT S. Recent advances in synthesis and analysis of Fe(VI) cathodes: Solution phase and solid-state Fe(VI) syntheses, reversible thin-film Fe(VI) synthesis, coating-stabilized Fe(VI) synthesis, and Fe(VI) analytical methodologies[J]. Journal of Solid State Electrochemistry, 2008, 12(12): 1523-1540. doi: 10.1007/s10008-008-0541-3
[24] RAI P K, LEE J, KAILASA S K, et al. A critical review of ferrate(VI)-based remediation of soil and groundwater[J]. Environment Research, 2018, 160: 420-448. doi: 10.1016/j.envres.2017.10.016
[25] WU J Z, CAI Y M, ZHANG M Q, et al. Enhancing oxidative capability of ferrate(VI) for oxidative destruction of phenol in water through intercalation of ferrate(VI) into layered double hydroxide[J]. Applied Clay Science, 2019, 171: 48-56. doi: 10.1016/j.clay.2019.02.006
[26] DRZEWICZ P, DROBNIEWSKA A, SIKORSKA K, et al. Analytical and ecotoxicological studies on degradation of fluoxetine and fluvoxamine by potassium ferrate[J]. Environment Technology, 2019, 40(25): 3265-3275. doi: 10.1080/09593330.2018.1468488
[27] WANG X S, LIU Y L, HUANG Z S, et al. Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I-/HA system[J]. Water Research, 2018, 144: 592-602. doi: 10.1016/j.watres.2018.07.061
[28] JUTAPORN P, LAOLERTWORAKUL W, ARMSTRONG M D, et al. Fluorescence spectroscopy for assessing trihalomethane precursors removal by MIEX resin[J]. Water Science and Technology, 2019, 79(5): 820-832. doi: 10.2166/wst.2019.036
[29] 沈兆欢. 磁性离子交换树脂与混凝沉淀组合对有机物去除特性研究[D]. 北京: 清华大学, 2014.
[30] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37: 10.
[31] HE X S, XI B D, WEI Z M, et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates[J]. Journal Hazardous Materials, 2011, 190(1/2/3): 293-299.
[32] HOSSEINI M, MERTENS S F L, ARSHADI M R. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine[J]. Corrosion Science, 2003, 45(7): 1473-1489. doi: 10.1016/S0010-938X(02)00246-9
[33] ZHANG H, QU J H, LIU H J. Effect of chlorination and ozone pre-oxidation on the photobacteria acute toxicity for dissolved organic matter from sewage treatment plants[J]. Science China-Chemistry, 2010, 53(11): 2394-2398. doi: 10.1007/s11426-010-4040-x
[34] LIN P F, ZHANG X J, WANG J, et al. Comparison of different combined treatment processes to address the source water with high concentration of natural organic matter during snowmelt period[J]. Journal of Environmental Sciences, 2015, 27: 51-58. doi: 10.1016/j.jes.2014.04.013
[35] SONG Y, DENG Y, JUNG C. Mitigation and degradation of natural organic matters (NOMs) during ferrate(VI) application for drinking water treatment[J]. Chemosphere, 2016, 146: 145-153. doi: 10.1016/j.chemosphere.2015.12.001
[36] TIRAFERRI A, KANG Y, GIANNELIS E P, et al. Superhydrophilicthin-film composite forward osmosis membranes for organic fouling control: Fouling behavior and antifouling mechanisms[J]. Environmental Science & Technology, 2012, 46(20): 11135-11144.