[1] HOU L W, WANG L G, ZHANG H, et al. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst[J]. Journal of Hazardous Materials, 2016, 302: 458-467. doi: 10.1016/j.jhazmat.2015.09.033
[2] LUO W, ZHU L H, WANG N, et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst[J]. Environmental Science and Technology, 2010, 5(44): 1786-1791.
[3] WANG N, ZHU L, WANG M, et al. Sono-enhanced degradation of dye pollutants with the use of H2O2 activated by Fe3O4 magnetic nanoparticles as peroxidase mimetic[J]. Ultrasonics Sonochemistry, 2010, 17(1): 78-83. doi: 10.1016/j.ultsonch.2009.06.014
[4] XU L, WANG J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environmental Science and Technology, 2012, 46(18): 10145-10153. doi: 10.1021/es300303f
[5] 詹艳慧, 林建伟, 王虹, 等. 四氧化三铁-沸石复合材料去除水中铵和磷酸盐研究[J]. 上海海洋大学学报, 2013, 22(3): 376-383.
[6] 王瑞钰, 刘潇阳, 张孝亮, 等. 四氧化三铁-石墨烯复合芬顿催化剂用于染料脱色的研究[J]. 自然科学版, 2015, 41(5): 588-592.
[7] SONG S Q, YANG H X, RAO R C, et al. High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst[J]. Applied Catalysis A: General, 2010, 375(2): 265-271. doi: 10.1016/j.apcata.2010.01.008
[8] AHMAD J J, BABAK K, NEAMT J, et al. Heterogeneous Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: Adsorption and degradation studies[J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 323-333. doi: 10.1016/j.jiec.2016.09.044
[9] 胡涛, 钱运华, 金叶玲, 等. 凹凸棒土的应用研究[J]. 中国矿业, 2005, 14(10): 73-76. doi: 10.3969/j.issn.1004-4051.2005.10.021
[10] WANG W B, TIAN G Y, ZHANG Z F, et al. A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of methylene blue and Cu(II) ions[J]. Chemical Engineering Journal, 2015, 265: 228-238. doi: 10.1016/j.cej.2014.11.135
[11] HAN S W, YU H M, YANG T T, et al. Magnetic activated-ATP@Fe3O4 nanocomposite as an efficient Fenton-like heterogeneous catalyst for degradation of ethidium bromide[J]. Scientific Reports, 2017, 7(1): 60-70. doi: 10.1038/s41598-017-00127-6
[12] JIE L, ZHAO Z W, SHAO P H, et al. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation[J]. Chemical Engineering Journal, 2015, 262: 854-861. doi: 10.1016/j.cej.2014.10.043
[13] XU J M, WEI L, YIN Q F, et al. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode[J]. Journal of Colloid and Interface Science, 2007, 315(1): 170-176. doi: 10.1016/j.jcis.2007.06.059
[14] MENG J H, YANG G Q, YAN L M, et al. Synthesis and characterization of magnetic nanometer pigment Fe3O4[J]. Dyes and Pigments, 2005, 66(2): 109-113. doi: 10.1016/j.dyepig.2004.08.016
[15] WILSON D, LANGELL M A. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature[J]. Applied Surface Science, 2014, 303: 6-13. doi: 10.1016/j.apsusc.2014.02.006
[16] PALIMI M J, ROSTAMI M, MAHDAVIAN M, et al. Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites[J]. Applied Surface Science, 2014, 320: 60-72. doi: 10.1016/j.apsusc.2014.09.026
[17] REITZ C, SUCHOMSKI C, CHAKRAVADHANULA V S K, et al. Morphology, microstructure, and magnetic properties of ordered large-pore mesoporous cadmium ferrite thin film spin glasses[J]. Inorganic Chemistry, 2013, 52(7): 3744-3754. doi: 10.1021/ic302283q
[18] BRIGGS D, BEAMSON G. XPS studies of the oxygen 1s and 2s levels in a wide range of functional polymers[J]. Analytical Chemistry, 1993, 65(11): 1517-1523. doi: 10.1021/ac00059a006
[19] WANG X, WANG L Y, HE X W, et al. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition[J]. Talanta, 2009, 78(2): 327-332. doi: 10.1016/j.talanta.2008.11.024
[20] MIKHAYLOVA M, KIM D K, BOBRYSHEVA N, et al. Superparamagnetism of magnetite nanoparticles: Dependence on surface modification[J]. Langmuir, 2004, 20(6): 2472-2477. doi: 10.1021/la035648e
[21] 柴琴琴, 呼世斌, 刘建伟, 等. 有机改性对凹凸棒黏土吸附四环素类抗生素的影响[J]. 中国环境监测, 2018, 34(5): 100-108.
[22] LONG A H, YANG L, ZHANG H. Degradation of toluene by a selective ferrous ion activated persulfate oxidation process[J]. Industrial and Engineering Chemistry Research, 2014, 53(3): 1033-1039. doi: 10.1021/ie402633n
[23] GONZALEZ-OLMOS R, MARTIN M J, GEORGI A, et al. Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH[J]. Applied Catalysis B: Environmental, 2012, 125: 51-58. doi: 10.1016/j.apcatb.2012.05.022
[24] WANG S, ZHOU N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process[J]. Ultrasonics Sonochemistry, 2016, 29: 156-162. doi: 10.1016/j.ultsonch.2015.09.008
[25] ELIZABETH G G, MORA M L, MARCO J F, et al. Characterization of nanostructured allophane clays and their use as support of iron species in a heterogeneous electro-Fenton system[J]. Applied Clay Science, 2013, 86: 153-161. doi: 10.1016/j.clay.2013.10.001
[26] HUA Z, TIAN Y, QI Y, et al. Degradation of landfill leachate compounds by persulfate for groundwater remediation[J]. Chemical Engineering Journal, 2016, 307: 399-407.
[27] LI H, WAN J, MA Y, et al. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron[J]. Science of the Total Environment, 2016, 562: 889-897. doi: 10.1016/j.scitotenv.2016.04.093
[28] ZOU X L, ZHOU T, MAO J, et al. Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system[J]. Chemical Engineering Journal, 2014, 257: 36-44. doi: 10.1016/j.cej.2014.07.048
[29] LIANG H Y, ZHANG Y Q, HUANG S B, et al. Oxidative degradation of p-chloroaniline by copper oxidate activated persulfate[J]. Chemical Engineering Journal, 2013, 218: 384-391. doi: 10.1016/j.cej.2012.11.093