[1] SAMANI M R, BORGHEI S M, OLAD A, et al. Removal of chromium from aqueous solution using polyaniline-poly ethylene glycol composite[J]. Journal of Hazardous Materials, 2010, 184(8): 248-254.
[2] TANG L, FANG Y, PANG Y, et al. Synergistic adsorption and reduction of hexavalent chromium using highly uniform polyaniline-magnetic mesoporous silica composite[J]. Chemical Engineering Journal, 2014, 254(6): 302-312.
[3] SARIN V, PANT K. Removal of chromium from industrial waste by using eucalyptus bark[J]. Bioresource Technology, 2006, 97(1): 15-20. doi: 10.1016/j.biortech.2005.02.010
[4] ZHOU M, XU J M, ZHU S F, et al. Exchange electrode-electrokinetic remediation of Cr-contaminated soil using solar energy[J]. Separation and Purification Technology, 2018, 190(8): 297-306.
[5] BANKS M K, SCHWAB A P, HENDERSON C. Leaching and reduction of chromium in soil as affected by soil organic content and plants[J]. Chemosphere, 2006, 62(7): 255-264.
[6] LIAO Y P, MIN X B, YANG Z H, et al. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation[J]. Environmental Science and Pollution Research, 2014, 21(6): 379-388.
[7] KIM D, JEON C, BAEK K, et al. Electrokinetic remediation of fluorine-contaminated soil: Conditioning of anolyte[J]. Journal of Hazardous Materials, 2009, 161(3): 565-569.
[8] LÓPEZ VIZCAÍNO R, YUSTRES A, ASENSIO L, et al. Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning[J]. Chemosphere, 2018, 199(2): 477-485.
[9] CANG L, FAN G P, ZHOU D M, et al. Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control[J]. Chemosphere, 2013, 90(11): 2326-2331.
[10] GIANNIS A, GIDARAKOS E, SKOUTA A. Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil[J]. Desalination, 2007, 211(2): 249-260.
[11] ZHOU D M, CANG L, ALSHAWABKEH A N, et al. Pilot-scale electrokinetic treatment of a Cu contaminated red soil[J]. Chemosphere, 2006, 63(6): 964-971. doi: 10.1016/j.chemosphere.2005.08.059
[12] MATURI K, REDDY K R. Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin[J]. Chemosphere, 2006, 63(6): 1022-1031. doi: 10.1016/j.chemosphere.2005.08.037
[13] SAWADA A, MORI K, TANAKA S, et al. Removal of Cr(VI) from contaminated soil by electrokinetic remediation[J]. Waste Management, 2004, 24(5): 483-490. doi: 10.1016/S0956-053X(03)00133-8
[14] MA J W, WANG F Y, HUANG Z H, et al. Simultaneous removal of 2, 4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal[J]. Journal of Hazardous Materials, 2010, 176(3): 715-720.
[15] 刘芳, 付融冰, 徐珍. 土壤电动修复的电极空间构型优化研究[J]. 环境科学, 2015, 36(2): 678-685.
[16] CHUNG H I, LEE M. A new method for remedial treatment of contaminated clayey soils by electrokinetics coupled with permeable reactive barriers[J]. Electrochimica Acta, 2007, 52(10): 3427-3431. doi: 10.1016/j.electacta.2006.08.074
[17] SUZUKI T, KAWAI K, MORIBE M, et al. Recovery of Cr as Cr(III) from Cr(VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier[J]. Journal of Hazardous Materials, 2014, 278(6): 297-303.
[18] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review[J]. Journal of Hazardous Materials, 2013, 251(1): 272-291.
[19] WANG Y X, HUANG L H, WANG Z X, et al. Application of Polypyrrole flexible electrode for electrokinetic remediation of Cr(VI)-contaminated soil in a main-auxiliary electrode system[J]. Chemical Engineering Journal, 2019, 373(5): 131-139.
[20] 杜玮, 张光生, 邹华, 等. 铬-菲复合污染土壤的电动修复效果[J]. 环境科学研究, 2016, 29(8): 1163-1169.
[21] ZHU F, LI L W, REN W T, et al. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material[J]. Environmental Pollution, 2017, 227(5): 444-450.
[22] YUAN L Z, XU X J, LI H Y, et al. The influence of macroelements on energy consumption during periodic power electrokinetic remediation of heavy metals contaminated black soil[J]. Electrochimica Acta, 2017, 235(3): 604-612.
[23] SHIN S, PARK S, BAEK K. Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil[J]. Environmental Science and Pollution Research, 2017, 24(10): 9820-9825. doi: 10.1007/s11356-017-8720-3
[24] YUAN L Z, XU X J, LI H Y, et al. Development of novel assisting agents for the electrokinetic remediation of heavy metal-contaminated kaolin[J]. Electrochimica Acta, 2016, 218(9): 140-148.
[25] FU R B, WEN D D, XIA X Q, et al. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes[J]. Chemical Engineering Journal, 2017, 316(1): 601-608.
[26] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633(3): 206-219.
[27] 薛浩, 孟凡生, 王业耀, 等. 酸化-电动强化修复铬渣场地污染土壤[J]. 环境科学研究, 2015, 28(8): 1317-1323.
[28] GUEMIZA K, COUDERT L, METAHNI S, et al. Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: A review[J]. Journal of Hazardous Materials, 2017, 333(3): 194-214.
[29] ZHANG K L, CHEN L, LI Y F, et al. Interactive effects of soil pH and substrate quality on microbial utilization[J]. European Journal of Soil Biology, 2020, 96(1): 31-41.
[30] 马兵兵, 姜滢, 罗燕, 等. 超声提取-离子色谱法测定土壤中10种水溶性阴离子[J]. 土壤, 2019, 51(6): 1253-1256.
[31] 张雪梅, 汪徐春, 许晨晨, 等. 土壤中有效磷快速测定方法的研究[J]. 安徽科技学院学报, 2015, 29(5): 50-54. doi: 10.3969/j.issn.1673-8772.2015.05.010
[32] 唐静, 闫海涛, 王鑫光. 离子色谱法测定土壤中氯离子、硫酸根离子、硝酸根离子[J]. 化学分析计量, 2017, 26(3): 57-60. doi: 10.3969/j.issn.1008-6145.2017.03.013
[33] 郭军玲, 金辉, 王永亮, 等. 含碳物料对晋北苏打盐化土理化性质的影响[J]. 华北农学报, 2019, 34(4): 199-207. doi: 10.7668/hbnxb.201751724
[34] PEDERSEN K B, JENSEN P E, OTTOSEN L M, et al. Influence of electrode placement for mobilising and removing metals during electrodialytic remediation of metals from shooting range soil[J]. Chemosphere, 2018, 210(7): 683-691.
[35] SHEN Z M, CHEN X J, JIA J P, et al. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes[J]. Environmental Pollution, 2007, 150(2): 193-199. doi: 10.1016/j.envpol.2007.02.004
[36] CHOWDHURY S R, YANFUL E K, PRATT A R. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles[J]. Journal of Hazardous Materials, 2012, 236(8): 246-256.
[37] RICHARD F C, BOURG A C M. Aqueous geochemistry of chromium: A review[J]. Water Research, 1991, 25(7): 807-816. doi: 10.1016/0043-1354(91)90160-R
[38] GUEDES P, LOPES V, COUTO N, et al. Electrokinetic remediation of contaminants of emergent concern in clay soil: Effect of operating parameters[J]. Environmental Pollution, 2019, 253(7): 625-635.
[39] LI G, GUO S H, LI S C, et al. Comparison of approaching and fixed anodes for avoiding the ‘focusing’ effect during electrokinetic remediation of chromium-contaminated soil[J]. Chemical Engineering Journal, 2012, 203(7): 231-238.
[40] LI D, XIONG Z, NIE Y, et al. Near-anode focusing phenomenon caused by the high anolyte concentration in the electrokinetic remediation of chromium(Ⅵ)-contaminated soil[J]. Journal of Hazardous Materials, 2012, 230(6): 282-291.
[41] CAMESELLE C. Enhancement of electro-osmotic flow during the electrokinetic treatment of A contaminated soil[J]. Electrochimica Acta, 2015, 181(2): 31-38.
[42] REZAEE M, ASADOLLAHFARDI G, GOMEZ-LAHOZ C, et al. Modeling of electrokinetic remediation of Cd- and Pb-contaminated kaolinite[J]. Journal of Hazardous Materials, 2019, 366(11): 630-635.
[43] LI T P, YUAN S H, WAN J Z, et al. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-β-cyclodextrin[J]. Chemosphere, 2009, 76(9): 1226-1232. doi: 10.1016/j.chemosphere.2009.05.045
[44] DIMIRKOU A, IOANNOU A, DOULA M. Preparation, characterization and sorption properties for phosphates of hematite, bentonite and bentonite-hematite systems[J]. Advances in Colloid and Interface Science, 2002, 97(1): 37-61.
[45] IBRAHIM Y, ABDULKAREM E, NADDEO V, et al. Synthesis of super hydrophilic cellulose-alpha zirconium phosphate ion exchange membrane via surface coating for the removal of heavy metals from wastewater[J]. Science of the Total Environment, 2019, 690(7): 167-180.