[1] 秦伯强, 高光, 朱广伟, 等. 湖泊富营养化及其生态系统响应[J]. 科学通报, 2013, 58(10): 855-864.
[2] PAERL H W, XU H, MCCARTHY M J, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy[J]. Water Research, 2011, 45(5): 1973-1983. doi: 10.1016/j.watres.2010.09.018
[3] SHAO J H, GU J D, PENG L, et al. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)[J]. Journal of Hazardous Materials, 2014, 272: 83-88. doi: 10.1016/j.jhazmat.2014.03.013
[4] 过龙根. 除藻与控藻技术[J]. 中国水利, 2006(17): 34-36. doi: 10.3969/j.issn.1000-1123.2006.17.012
[5] PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 15: 1-20. doi: 10.1016/j.jphotochemrev.2012.10.001
[6] 黄微雅, 杨骏, 张渊明. 光催化去除有害藻类的研究进展[J]. 环境科学与技术, 2012, 35(5): 66-69.
[7] FAGAN R, MCCORMACK D E, DIONYSIOU D D, et al. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern[J]. Materials Science in Semiconductor Processing, 2015, 42: 2-14.
[8] PINHO L X, AZEVEDO J, BRITO Â, et al. Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin[J]. Chemical Engineering Journal, 2015, 268: 144-152. doi: 10.1016/j.cej.2014.12.111
[9] TENG W, LI X Y, ZHAO Q D, et al. Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation[J]. Journal of Materials Chemistry A, 2013, 32(1): 9060-9068.
[10] XU H, ZHAO H Z, SONG Y H, et al. g-C3N4/Ag3PO4 composites with synergistic effect for increased photocatalytic activity under the visible light irradiation[J]. Materials Science in Semiconductor Processing, 2015, 39: 726-734. doi: 10.1016/j.mssp.2015.04.013
[11] LI P, SONG Y, YU S. Removal of Microcystis aeruginosa using hydrodynamic cavitation: Performance and mechanisms[J]. Water Research, 2014, 62: 241-248. doi: 10.1016/j.watres.2014.05.052
[12] 郑婧, 陈晓晖. 超细二氧化硅的制备和表征[J]. 硅酸盐通报, 2008, 27(6): 1109-1113.
[13] CUI C, QIU Y W, HU H H, et al. Silver nanoparticles modified reduced graphene oxide wrapped Ag3PO4/TiO2 visible-light-active photocatalysts with superior performance[J]. RSC Advances, 2016, 6(49): 43697-43706. doi: 10.1039/C6RA03420A
[14] QU A L, XU X M, XIE H L, et al. Effects of calcining temperature on photocatalysis of g-C3N4/TiO2 composites for hydrogen evolution from water[J]. Materials Research Bulletin, 2016, 80: 167-176. doi: 10.1016/j.materresbull.2016.03.043
[15] LI G Y, NIE X, CHEN J Y, et al. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach[J]. Water Research, 2015, 86: 17-24. doi: 10.1016/j.watres.2015.05.053
[16] REN Y, ZHAO Q, LI X, et al. 2D Porous graphitic C3N4 nanosheets/Ag3PO4 nanocomposites for enhanced visible-light photocatalytic degradation of 4-chlorophenol[J]. Journal of Nanoparticle Research, 2014, 16(8): 2532. doi: 10.1007/s11051-014-2532-x
[17] HOU Y, ZUO F, MA Q, et al. Ag3PO4 oxygen evolution photocatalyst employing synergistic action of Ag/AgBr nanoparticles and graphene sheets[J]. Journal of Physical Chemistry C, 2012, 116(38): 20132-20139. doi: 10.1021/jp303219j
[18] YAN J, WANG C, XU H, et al. AgI/Ag3PO4 heterojunction composites with enhanced photocatalytic activity under visible light irradiation[J]. Applied Surface Science, 2013, 287: 178-186. doi: 10.1016/j.apsusc.2013.09.113
[19] WANG X, WANG X, ZHAO J, et al. An alternative to in situ photocatalytic degradation of microcystin-LR by worm-like N, P co-doped TiO2/expanded graphite by carbon layer (NPT-EGC) floating composites[J]. Applied Catalysis B: Environmental, 2017, 206: 479-489. doi: 10.1016/j.apcatb.2017.01.046