[1] SOLOMON K R, CARR J A, DU PREEZ L H, et al. Effects of atrazine on fish, amphibians, and aquatic reptiles: A critical review[J]. Critical Reviews in Toxicology, 2008, 38(9): 721-772. doi: 10.1080/10408440802116496
[2] 邱罡, 谢凝子. 农药莠去津的危害与非生物降解研究进展[J]. 广东化工, 2008(1): 73-77. doi: 10.3969/j.issn.1007-1865.2008.01.021
[3] SANDERSON J T, SEINEN W, GIESY J P, et al. 2-chloro-s-triazine herbicides induce aromatase (CYP19) activity in H295R human adrenocortical carcinoma cells: A novel mechanism for estrogenicity[J]. Toxicological Sciences, 2000, 54(1): 121-127. doi: 10.1093/toxsci/54.1.121
[4] CRAGIN L A, KESNER J S, BACHAND A M, et al. Menstrual cycle characteristics and reproductive hormone levels in women exposed to atrazine in drinking water[J]. Environmental Research, 2011, 111(8): 1293-1301. doi: 10.1016/j.envres.2011.09.009
[5] DELACASA-RESINO I, VALDEHITA A, SOLER F, et al. Endocrine disruption caused by oral administration of atrazine in european quail[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2012, 156(3/4): 159-165.
[6] 曲小姝, 栾键, 吕玲玲, 等. 溶剂法生产莠去津工艺的改进[J]. 东北师大学报(自然科学版), 2012, 44(3): 87-90.
[7] ARELLANO C A P, GONZÁLEZ A J, MARTÍNEZ S S, et al. Enhanced mineralization of atrazine by means of photodegradation processes using solar energy at pilot plant scale[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 272(15): 21-27.
[8] ZHU L, MA T, WANG J, et al. Enhancement of atrazine removal by free and immobilized arthrobacter sp. HB-5 in soil and wastewater[J]. Soil and Sediment Contamination, 2010, 20(1): 87-97.
[9] 杨德玉, 李小明, 戴速航, 等. 一株耐盐性莠去津高效降解菌Halomonas sp.SY-AD-9的分离、鉴定及其特性[J]. 农药, 2015, 54(1): 34-38. doi: 10.3969/j.issn.1002-5480.2015.01.010
[10] LIU B, CHEN B, ZHANG B Y, et al. Photocatalytic degradation of polycyclic aromatic hydrocarbons in offshore produced water: Effects of water matrix[J]. Journal of Environmental Engineering, 2016, 142(11): 04016054. doi: 10.1061/(ASCE)EE.1943-7870.0001135
[11] LIU B, CHEN B, LEE K, et al. Removal of naphthalene from offshore produced water through immobilized nano-TiO2 aided photo-oxidation[J]. Water Quality Research Journal of Canada, 2016, 51(3): 246-255. doi: 10.2166/wqrjc.2016.027
[12] 李贞燕, 陈冰. 纳米二氧化钛光催化氧化油田采出水中萘和芴的影响因素分析[J]. 环境工程学报, 2015, 9(5): 2106-2112. doi: 10.12030/j.cjee.20150513
[13] 李贞燕, 陈冰. 油田采出水中萘和芴的紫外光催化和·OH氧化降解过程影响因素与条件优化分析[J]. 环境工程, 2015, 33(10): 31-34.
[14] LIU B, CHEN B, ZHANG B. Oily wastewater treatment by nano-TiO2-induced photocatalysis: Seeking more efficient and feasible solutions[J]. IEEE Nanotechnology Magazine, 2017, 11(3): 4-15. doi: 10.1109/MNANO.2017.2708818
[15] CHONG M N, JIN B, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: A review[J]. Water Research, 2010, 44(10): 2997-3027. doi: 10.1016/j.watres.2010.02.039
[16] CHAN K H, CHU W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process[J]. Water Research, 2009, 43(9): 2513-2521. doi: 10.1016/j.watres.2009.02.029
[17] JING L, CHEN B, WEN D, et al. The removal of COD and NH3-N from atrazine production wastewater treatment using UV/O3: Experimental investigation and kinetic modeling[J]. Environmental Science and Pollution Research International, 2018, 25(3): 2691-2701. doi: 10.1007/s11356-017-0701-z
[18] JING L, CHEN B, WEN D, et al. Pilot-scale treatment of atrazine production wastewater by UV/O3/ultrasound: Factor effects and system optimization[J]. Journal of Environmental Management, 2017, 203: 182-190. doi: 10.1016/j.jenvman.2017.07.027
[19] ZAZO J A, CASAS J A, MOHEDANO A F, et al. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst[J]. Applied Catalysis B: Environmental, 2006, 65(3/4): 261-268.
[20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[21] 沈阳市环境监测中心站. 水质 氨氮的测定 水杨酸分光光度法: HJ 536-2009[S]. 北京: 中国环境科学出版社, 2009.
[22] JING L, CHEN B, ZHANG B, et al. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation[J]. Water Research, 2015, 81(15): 101-112.
[23] 李贞燕, 陈冰, 平静. 紫外光(UV)光解油田采出水中多环芳烃[J]. 环境工程学报, 2014, 8(6): 2267-2270.
[24] BIANCHI C L, PIROLA C, RAGAINI V, et al. Mechanism and efficiency of atrazine degradation under combined oxidation processes[J]. Applied Catalysis B: Environmental, 2006, 64(1/2): 131-138.
[25] JAIN S, YAMGAR R, JAYARAM R V. Photolytic and photocatalytic degradation of atrazine in the presence of activated carbon[J]. Chemical Engineering Journal, 2009, 148(2/3): 342-347.
[26] LU M C, CHEN J N, CHANG C P. Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton’s reagent[J]. Chemosphere, 1997, 35(10): 2285-2293. doi: 10.1016/S0045-6535(97)00307-X
[27] LEE B N, LIAW W D, LOU J C. Photocatalytic decolorization of methylene blue in aqueous TiO2 suspension[J]. Environmental Engineering Science, 1999, 16(3): 165-175. doi: 10.1089/ees.1999.16.165
[28] YUAN R, RAMJAUN S N, WANG Z, et al. Photocatalytic degradation and chlorination of azo dye in saline wastewater: Kinetics and AOX formation[J]. Chemical Engineering Journal, 2012, 192: 171-178. doi: 10.1016/j.cej.2012.03.080
[29] YUAN R, RAMJAUN S N, WANG Z, et al. Concentration profiles of chlorine radicals and their significances in ·OH-induced dye degradation: Kinetic modeling and reaction pathways[J]. Chemical Engineering Journal, 2012, 209: 38-45. doi: 10.1016/j.cej.2012.07.127
[30] YANG S Y, CHEN Y X, LOU L P, et al. Involvement of chloride anion in photocatalytic process[J]. Journal of Environmental Sciences, 2005, 17(5): 761-765.
[31] FENG Y, SMITH D W, BOLTON J R. Photolysis of aqueous free chlorine species (HOCl and OCl−1) with 254 nm ultraviolet light[J]. Journal of Environmental Engineering and Science, 2007, 6(3): 277-284. doi: 10.1139/s06-052
[32] THOMPSON G, OCKERMAN L T, SCHREYER J. Preparation and purification of potassium ferrate(VI)[J]. Journal of the American Chemical Society, 1951, 73(3): 1379-1381.
[33] JIANG J Q, LLOYD B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment[J]. Water Research, 2002, 36(6): 1397-1408. doi: 10.1016/S0043-1354(01)00358-X
[34] SHARMA V K, RIVERA W, SMITH J O, et al. Ferrate(VI) oxidation of aqueous cyanide[J]. Environmental Science & Technology, 1998, 32(17): 2608-2613.
[35] LUO C, FENG M, SHARMA V K, et al. Oxidation of pharmaceuticals by ferrate(VI) in hydrolyzed urine: Effects of major inorganic constituents[J]. Environmental Science Technology, 2019, 53(9): 5272-5281. doi: 10.1021/acs.est.9b00006
[36] 张敏东. 原位高铁酸氧化技术处理高氯碱性废水的研究及其工业化应用[D]. 杭州: 浙江大学, 2013.
[37] MATTHEWS R W. Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium dioxide suspensions[J]. Journal of the Chemical Society, 1984, 80(2): 457-471. doi: 10.1039/f19848000457
[38] BAHNEMANN D W, HILGENDORFF M, MEMMING R. Charge carrier dynamics at TiO2 particles: Reactivity of free and trapped holes[J]. The Journal of Physical Chemistry B, 1997, 101(21): 4265-4275. doi: 10.1021/jp9639915
[39] WANG Y, HONG C S. TiO2-mediated photomineralization of 2-chlorobiphenyl: The role of O2[J]. Water Research, 2000, 34(10): 2791-2797. doi: 10.1016/S0043-1354(00)00009-9
[40] CAMEL V, BERMOND A. The use of ozone and associated oxidation processes in drinking water treatment[J]. Water Research, 1998, 32(11): 3208-3222. doi: 10.1016/S0043-1354(98)00130-4