[1] |
MAUL J D, CHULER L J, BELDEN J B, et al. Effects of the antibiotic ciprofloxacin on stream microbial communities and detritivorous macroinvertebrates[J]. Environmental Toxicology and Chemistry, 2006, 25(6): 1598-1606. doi: 10.1897/05-441R.1
|
[2] |
MARTINEZ-CARBALLO E, GONZALEZ-BARREIRO C, SCHARF S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria[J]. Environmental Pollution, 2007, 148(2): 570-579. doi: 10.1016/j.envpol.2006.11.035
|
[3] |
ZHAO L, DONG Y H, WANG H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5): 1069-1075. doi: 10.1016/j.scitotenv.2009.11.014
|
[4] |
GUINEA E, GARRIDO J A, RODRIGUEZ R M, et al. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration[J]. Electrochimica Acta, 2010, 55(6): 2101-2115. doi: 10.1016/j.electacta.2009.11.040
|
[5] |
FICK J, SODERSTROM H, LINDBERG R H, et al. Contamination of surface, ground, and drinking water from pharmaceutical production[J]. Environmental Toxicology and Chemistry, 2009, 28(12): 2522-2527. doi: 10.1897/09-073.1
|
[6] |
FERREIRA V R A, AMORIM C L, CRAVO S M, et al. Fluoroquinolones biosorption onto microbial biomass: Activated sludge and aerobic granular sludge[J]. International Biodeterioration & Biodegradation, 2016, 110: 53-60.
|
[7] |
KUMMERER K. Pharmaceuticals in the environment[J]. Annual Review of Environment and Resources, 2010, 35: 57-75. doi: 10.1146/annurev-environ-052809-161223
|
[8] |
ZHANG H B, LUO Y M, WU L H, et al. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming[J]. Environmental Science and Pollution Research, 2015, 22(8): 5908-5918. doi: 10.1007/s11356-014-3731-9
|
[9] |
WANG Q J, MO C H, LI Y W, et al. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao[J]. Environmental Pollution, 2010, 158(7): 2350-2358. doi: 10.1016/j.envpol.2010.03.019
|
[10] |
GUPTA A, GARG A. Degradation of ciprofloxacin using Fenton's oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment[J]. Chemosphere, 2018, 193: 1181-1188. doi: 10.1016/j.chemosphere.2017.11.046
|
[11] |
STURINI M, SPELTINI A, MARASCHI F, et al. Sunlight-induced degradation of fluoroquinolones in wastewater effluent: Photoproducts identification and toxicity[J]. Chemosphere, 2015, 134: 313-318. doi: 10.1016/j.chemosphere.2015.04.081
|
[12] |
ZHAO H, LIU X, CAO Z, et al. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes[J]. Journal of Hazardous Materials, 2016, 310: 235-245. doi: 10.1016/j.jhazmat.2016.02.045
|
[13] |
XIONG J Q, KURADE M B, KIM J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana[J]. Journal of Hazardous Materials, 2017, 323: 212-219. doi: 10.1016/j.jhazmat.2016.04.073
|
[14] |
沈东升, 何虹蓁, 汪美贞, 等. 土霉素降解菌TJ-1在猪粪无害化处理中的作用[J]. 环境科学学报, 2013, 33(1): 147-153.
|
[15] |
KIM D W, HEINZE T M, KIM B S, et al. Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant[J]. Applied and Environmental Microbiology, 2011, 77(17): 6100-6108. doi: 10.1128/AEM.00545-11
|
[16] |
PRIETO A, MODER M, RODIL R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products[J]. Bioresource Technology, 2011, 102(23): 10987-10995. doi: 10.1016/j.biortech.2011.08.055
|
[17] |
AMORIM C L, MOREIRA I S, MAIA A S, et al. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11[J]. Applied Microbiology and Biotechnology, 2014, 98(7): 3181-3190. doi: 10.1007/s00253-013-5333-8
|
[18] |
ČVANČAROVA M, MOEDER M, FILIPOVA A, et al. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi: Metabolites, enzymes and residual antibacterial activity[J]. Chemosphere, 2015, 136: 311-320. doi: 10.1016/j.chemosphere.2014.12.012
|
[19] |
WETZSTEIN H G, SCHMEER N, KARL W. Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: Identification of metabolites[J]. Applied and Environmental Microbiology, 1997, 63(11): 4272-4281.
|
[20] |
MARTENS R, WETZSTEIN H G, ZADRAZIL F, et al. Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi[J]. Applied and Environmental Microbiology, 1996, 62(11): 4206-4209.
|
[21] |
WETZSTEIN H G, STADLER M, TICHY H V, et al. Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum[J]. Applied and Environmental Microbiology, 1999, 65(4): 1556-1563.
|
[22] |
PAN L J, LI J, LI C X, et al. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge[J]. Journal of Hazardous Materials, 2018, 343: 59-67. doi: 10.1016/j.jhazmat.2017.09.009
|
[23] |
PAN L J, TANG X D, LI C X, et al. Biodegradation of sulfamethazine by an isolated thermophile: Geobacillus sp. S-07[J]. World Journal of Microbiology and Biotechnology, 2017, 33(5): 85. doi: 10.1007/s11274-017-2245-2
|
[24] |
AKASSOU M, GROLEAU D. Optimization of the production of an extracellular and thermostable amylolytic enzyme by Thermus thermophilus HB8 and basic characterization[J]. Extremophiles, 2018, 22(2): 189-202. doi: 10.1007/s00792-017-0987-2
|
[25] |
BLANQUEZ A, GUILLEN F, RODRIGUEZ J, et al. The degradation of two fluoroquinolone based antimicrobials by SilA, an alkaline laccase from Streptomyces ipomoeae[J]. World Journal of Microbiology and Biotechnology, 2016, 32(3): 52. doi: 10.1007/s11274-016-2032-5
|
[26] |
KOVAR K, CHALOUPKA V, EGLI T. A threshold substrate concentration is required to initiate the degradation of 3-phenylpropionic acid in Escherichia coli[J]. Acta Biotechnologica, 2002, 22(3/4): 285-298.
|
[27] |
孟婧. 木质素促进白腐真菌降解偶氮染料的机制研究[D]. 武汉: 华中科技大学, 2016.
|
[28] |
LOH K C, YU Y G. Kinetics of carbazole degradation by Pseudomonas putida in presence of sodium salicylate[J]. Water Research, 2000, 34(17): 4131-4138. doi: 10.1016/S0043-1354(00)00174-3
|
[29] |
LUO W, ZHU X C, CHEN W T, et al. Mechanisms and strategies of microbial cometabolism in the degradation of organic compounds-chlorinated ethylenes as the model[J]. Water Science and Technology, 2014, 69(10): 1971-1983. doi: 10.2166/wst.2014.108
|
[30] |
RAMASWAMY J, PRASHER S O, PATEL R M, et al. The effect of composting on the degradation of a veterinary pharmaceutical[J]. Bioresource Technology, 2010, 101(7): 2294-2299. doi: 10.1016/j.biortech.2009.10.089
|
[31] |
FELCZAK A, ZAWADZKA K, LISOWSKA K. Efficient biodegradation of quinolone: Factors determining the process[J]. International Biodeterioration & Biodegradation, 2014, 96: 127-134.
|
[32] |
BECKER D, DELLA GIUSTINA S V, RODRIGUEZ-MOZAZ S, et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase: Degradation of compounds does not always eliminate toxicity[J]. Bioresource Technology, 2016, 219: 500-509. doi: 10.1016/j.biortech.2016.08.004
|
[33] |
WAMMER K H, KORTE A R, LUNDEEN R A, et al. Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin[J]. Water Research, 2013, 47(1): 439-448. doi: 10.1016/j.watres.2012.10.025
|