[1] |
中华人民共和国生态环境部. 生态环境部公布2018年度《水污染防止行动计划》重点任务实施情况[EB/OL]. [2019-07-23]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/201907/t20190723_712133.html, 2019.
|
[2] |
YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73. doi: 10.1016/j.watres.2015.04.002
|
[3] |
MCCARTY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer: Can this be achieved?[J]. Environmental Science & Technology, 2011, 45: 7100-7106.
|
[4] |
SHEN Y W, LINVILLE J L, URGUN-DEMIRTAS M, et al. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 346-362. doi: 10.1016/j.rser.2015.04.129
|
[5] |
MUMME J, SROCKE F, HEEG K, et al. Use of biochars in anaerobic digestion[J]. Bioresource Technology, 2014, 164: 189-197. doi: 10.1016/j.biortech.2014.05.008
|
[6] |
WATANABE R, TADA C, BABA Y, et al. Enhancing methane production during the anaerobic digestion of crude glycerol using Japanese cedar charcoal[J]. Bioresource Technology, 2013, 150: 387-392. doi: 10.1016/j.biortech.2013.10.030
|
[7] |
LV F, LUO C H, SHAO L M, et al. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina[J]. Water Research, 2016, 90: 34-43. doi: 10.1016/j.watres.2015.12.029
|
[8] |
CHEN S S, ROTARU A, SHRESTHA P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4: 5019.
|
[9] |
ROTARU A, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80: 4599-4605. doi: 10.1128/AEM.00895-14
|
[10] |
LOVLEY D R. Happy together: Microbial communities that hook up to swap electrons[J]. The ISME Journal, 2017, 11: 327-336.
|
[11] |
LOVLEY D R. Syntrophy goes electric: Direct interspecies electron transfer[J]. Annual Review of Microbiology, 2017, 71: 643-664. doi: 10.1146/annurev-micro-030117-020420
|
[12] |
DE BOK F A M, PLUGGE C M, STAMS A J M. Interspecies electron transfer in methanogenic propionate degrading consortia[J]. Water Research, 2004, 38: 1368-1375. doi: 10.1016/j.watres.2003.11.028
|
[13] |
MCINERNEY M J, STRUCHTEMEYER C G, SIEBER J S, et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism[J]. Annals of the New York Academy Sciences, 2008, 1125: 58-72. doi: 10.1196/annals.1419.005
|
[14] |
STAMS A J M, PLUGGE C M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology, 2009, 7: 568-577. doi: 10.1038/nrmicro2166
|
[15] |
KLVPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48: 5601-5611.
|
[16] |
SHEN Y W, LINVILLE J L, URGUN-DEMIRTAS M, et al. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal[J]. Applied Energy, 2015, 158: 300-309. doi: 10.1016/j.apenergy.2015.08.016
|
[17] |
SUN T, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communication, 2017, 8: 14873. doi: 10.1038/ncomms14873
|
[18] |
CRUZ VIGGI C, SIMONETTI S, PALMA E, et al. Enhancing methane production from food waste fermentate using biochar: The added value of electrochemical testing in pre-selecting the most effective type of biochar[J]. Biotechnology for Biofuels, 2017, 10: 303. doi: 10.1186/s13068-017-0994-7
|
[19] |
KWANG H K, JAE-YOUNG K, TAE-SU C, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)[J]. Bioresource Technology, 2012, 118: 158-162. doi: 10.1016/j.biortech.2012.04.094
|
[20] |
BREWER C E, SCHMIDT-ROHR K, SATRIO J A, et al. Characterization of biochar from fast pyrolysis and gasification systems[J]. Environmental Progress & Sustainable Energy, 2009, 28: 386-396.
|
[21] |
ZHAO L, CAO X D, MASEK O, et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J]. Journal of Hazardous Materials, 2013, 256-257: 1-9. doi: 10.1016/j.jhazmat.2013.04.015
|
[22] |
LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115: 12251-12285. doi: 10.1021/acs.chemrev.5b00195
|
[23] |
ZHANG C F, KATAYAMA A. Humin as an electron mediator for microbial reductive dehalogenation[J]. Environmental Science & Technology, 2012, 46: 6575-6583.
|
[24] |
XU Y, LU Y Q, DAI X H, et al. The influence of organic-binding metals on the biogas conversion of sewage sludge[J]. Water Research, 2017, 126: 329-341. doi: 10.1016/j.watres.2017.09.046
|
[25] |
WERNER J J, KNIGHTS D, GARCIA M L, et al. Bacterial community structures are unique and resilient in full-scale bioenergy systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 4158-4163. doi: 10.1073/pnas.1015676108
|
[26] |
RIVIERE D, DESVIGNES V, PELLETIER E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. The ISME Journal, 2009, 3: 700-714.
|
[27] |
SUNDBERG C, AL-SOUND W A, LARSSOM M, et al. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters[J]. FEMS Microbiology Ecology, 2013, 85: 612-626. doi: 10.1111/1574-6941.12148
|
[28] |
DE VRIEZE J, RAPORT L, ROUME H, et al. The full-scale anaerobic digestion microbiome is represented by specific marker populations[J]. Water Research, 2016, 104: 101-110. doi: 10.1016/j.watres.2016.08.008
|
[29] |
ITO T, YOSHIGUCHI K, ARIESYADY H D, et al. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge[J]. The ISME Journal, 2011, 5: 1844-1856.
|
[30] |
ZHAO Z Q, ZHANG Y B, WOODARD T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191: 140-145. doi: 10.1016/j.biortech.2015.05.007
|
[31] |
ZHAO Z Q, ZHANG Y B, HOLMES D E, et al. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors[J]. Bioresource Technology, 2016, 209: 148-156. doi: 10.1016/j.biortech.2016.03.005
|
[32] |
ZHAO Z Q, LI Y, QUAN X, et al. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research, 2017, 115: 266-277. doi: 10.1016/j.watres.2017.02.067
|
[33] |
DANG Y, HOLMES D E, ZHAO Z Q, et al. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials[J]. Bioresource Technology, 2016, 220: 516-522. doi: 10.1016/j.biortech.2016.08.114
|
[34] |
JING Y H, WAN J J, ANGELIDAKI I, et al. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite[J]. Water Research, 2017, 108: 212-221. doi: 10.1016/j.watres.2016.10.077
|
[35] |
WANG T, ZHANG D, DAI L L, et al. Magnetite triggering enhanced direct interspecies electron transfer: A scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge[J]. Environmental Science & Technology, 2018, 52: 7160-7169.
|
[36] |
MAUS I, WIBBERG D, STANTSCHEFF R, et al. Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2(T): Isolated from a sewage sludge digester[J]. Journal Bacteriology, 2012, 194: 5487-5488. doi: 10.1128/JB.01292-12
|
[37] |
ROTARU A, SHRESTHA P M, LIU F H, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7: 408-415.
|
[38] |
CONKLIN A, STENSEL H D, FERGUSON J. Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion[J]. Water Environment Research, 2006, 78: 486-496. doi: 10.2175/106143006X95393
|
[39] |
DE VRIEZE J, HENNEBEL T, BOON N, et al. Methanosarcina: The rediscovered methanogen for heavy duty biomethanation[J]. Bioresource Technology, 2012, 112: 1-9. doi: 10.1016/j.biortech.2012.02.079
|
[40] |
SMITH K S, INGRAM-SMITH C. Methanosaeta, the forgotten methanogen[J]. Trends in Microbiology, 2007, 15: 150-155. doi: 10.1016/j.tim.2007.02.002
|
[41] |
KARAKASHEV D, BATSTONE D J, TRABLY E, et al. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae[J]. Applied and Environmental Microbiology, 2006, 72: 5138-5141. doi: 10.1128/AEM.00489-06
|
[42] |
KAPPLEER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344.
|
[43] |
SMITH J A, NEVIN K P, LOVLEY D R. Syntrophic growth via quinone-mediated interspecies electron transfer[J]. Frontiers in Microbiology, 2015, 6: 121.
|
[44] |
WU S, FANG G D, WANG Y J, et al. Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite[J]. Environmental Science & Technology, 2017, 51: 9709-9717.
|
[45] |
PREVOTEAU A, RONSSE F, CID I, et al. The electron donating capacity of biochar is dramatically underestimated[J]. Scientific Reports, 2016, 6: 32870. doi: 10.1038/srep32870
|
[46] |
YANG Y F, ZHANG Y B, LI Z Y, et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J]. Journal of Cleaner Production, 2017, 149: 1101-1108. doi: 10.1016/j.jclepro.2017.02.156
|