[1] |
中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015.
|
[2] |
LIU X W. Progress of desulfurization and denitration technology of flue gas in china[J]. Earth and Environmental Science, 2019, 242(4): 2447-2450.
|
[3] |
金平, 王昊辰, 李磊, 等. 烟气脱硫技术现状及展望[J]. 当代化工, 2019, 48(1): 119-121. doi: 10.3969/j.issn.1672-8114.2019.01.075
|
[4] |
SHI W X, LIN C, CHEN W, et al. Environmental effect of current desulfurization technology on fly dust emission in China[J]. Renewable and Sustainable Energy Reviews, 2017, 72(5): 1-9. doi: 10.1016/j.rser.2017.01.033
|
[5] |
GUO X D, ZHENG L, SHU Y X, et al. Modeling and optimization of wet flue gas desulfurization system based on a hybrid modeling method[J]. Journal of the Air & Waste Management Association, 2019, 69(5): 565-575.
|
[6] |
JANG H, SHU L, SO S. Analysis the compressive strength of flue gas desulfurization gypsum using artificial neural network[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(1): 485-490. doi: 10.1166/jnn.2020.17235
|
[7] |
FICHOU D, MORLOCK G E. Powerful artificial neural network for planar chromatographic image evaluation, shown for denoising and feature extraction[J]. Analytical Chemistry, 2018, 90(11): 6984-6991. doi: 10.1021/acs.analchem.8b01298
|
[8] |
王俊. 火力发电厂石灰石-石膏湿法脱硫系统优化运行研究[D]. 北京: 北京交通大学, 2010.
|
[9] |
SAMPADA D, VIJAI S, VIJAY P. Stepwise cox regression analysis in SPSS[J]. Cancer Research, Statistics, and Treatment, 2018, 1(2): 167-170.
|
[10] |
杨勇平, 袁星, 黄圣伟, 等. 火电机组湿法脱硫系统能耗的回归分析[J]. 工程热物理学报, 2012, 33(11): 1854-1859.
|
[11] |
胡满银, 刘松涛, 刘炳伟, 等. 湿式脱硫装置脱硫效率的回归分析[J]. 中国电力, 2004(7): 75-77.
|
[12] |
王岳宸. 超低排放条件下湿法脱硫塔能效分析研究[D]. 济南: 山东大学, 2018.
|
[13] |
刘京. 火电厂锅炉及辅助系统能效评价方法的研究[D]. 北京: 华北电力大学, 2014.
|
[14] |
张健华. 火电厂能效综合评价[D]. 北京: 华北电力大学, 2015.
|
[15] |
杨少龙, 韩志涛, 潘新祥, 等. 基于灰色层次分析法的船舶废气SOx减排技术评价[J]. 环境工程学报, 2015, 9(10): 4928-4934. doi: 10.12030/j.cjee.20151049
|
[16] |
刘剑. 燃煤机组湿法脱硫系统能效评估方法研究[J]. 电气应用, 2013, 32(S2): 91-94.
|
[17] |
孙芳芳. 浅议灰色关联度分析方法及其应用[J]. 科技信息, 2010(17): 880-882. doi: 10.3969/j.issn.1001-9960.2010.17.0721
|
[18] |
史梦洁. 石灰石-石膏湿法脱硫系统综合能效评估方法研究[D]. 北京: 华北电力大学, 2014.
|
[19] |
崔亚兵. 燃煤电厂烟气脱硫技术和经济性分析及其模糊综合评价研究[D]. 南京: 东南大学, 2005.
|
[20] |
KRISHNAMOORTHY S, RUEDA L, SAAD S, et al. Identification of user behavioral biometrics for authentication using keystroke dynamics and machine learning[C]//International Conference on Biometric Engineering and Applications. Amsterdam, 2018: 50-57.
|
[21] |
马旭霞. 支持向量机理论及应用[J]. 科学技术创新, 2019(2): 13-14.
|
[22] |
李永娜. 基于支持向量机的回归预测综述[J]. 信息通信, 2014(11): 32-33. doi: 10.3969/j.issn.1673-1131.2014.11.017
|
[23] |
陈金凤. 支持向量机回归算法的研究与应用[D]. 无锡: 江南大学, 2009.
|
[24] |
DONG Y, CHENG W, LI S. A new regression method based on SVM classification[C]//IEEE. Eighth International Conference on Fuzzy Systems & Knowledge Discovery, IEEE. Shanghai, 2011: 978-1011.
|
[25] |
ZENG X, CHEN X. SMO-based pruning methods for sparse least squares support vector machines[J]. IEEE transactions on Neural Networks, 2005, 16(6): 1541-1546. doi: 10.1109/TNN.2005.852239
|
[26] |
陈柳, 李岁月. 对FGD系统的研究及脱硫效率影响因素分析[J]. 现代盐化工, 2018, 45(2): 41-42. doi: 10.3969/j.issn.1005-880X.2018.02.019
|
[27] |
吕新锋. 石灰石-石膏湿法烟气脱硫设施常见故障及影响脱硫效率因素分析[J]. 电力科技与环保, 2018, 34(2): 27-29. doi: 10.3969/j.issn.1674-8069.2018.02.008
|
[28] |
HRASTEL I, GERBEC M, STERGARŠEK A. Technology optimization of wet flue gas desulfurization process[J]. Chemical Engineering & Technology, 2010, 30(2): 220-233.
|
[29] |
薛龙, 胡颖丽. 脱硫浆液品质对脱硫效果的影响因素研究[J]. 山西冶金, 2019, 42(2): 24-26.
|