[1] 胡维杰. 我国污水处理厂污泥处理处置需关注的若干内容[J]. 给水排水, 2019, 45(3): 35-41.
[2] 胡春云, 陈鹏, 吴家桦, 等. 城市污泥处理处置技术现状及展望[J]. 东方电气评论, 2018, 32(3): 16-19.
[3] LOU J Q, SUN P D, GUO M X, et al. Simultaneous sludge reduction and nutrient removal (SSRNR) with interaction between Tubificidae and microorganisms: A full-scale study[J]. Bioresource Technology, 2011, 102(24): 11132-11136. doi: 10.1016/j.biortech.2011.09.048
[4] HENDRICKX T L G, ELISSEN H H J, TEMMINK H, et al. Operation of an aquatic worm reactor suitable for sludge reduction at large scale[J]. Water Research, 2011, 45(16): 4923-4929. doi: 10.1016/j.watres.2011.06.031
[5] LI L P, TIAN Y, ZHANG J, et al. Insight into the roles of worm reactor on wastewater treatment and sludge reduction in anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR): Performance and mechanism[J]. Chemical Engineering Journal, 2017, 330: 718-726. doi: 10.1016/j.cej.2017.08.010
[6] ZHU X F, YUAN W Y, WANG Z W, et al. Effect of worm predation on changes in waste activated sludge properties[J]. Water Environment Research, 2016, 88(5): 387-393. doi: 10.2175/106143016X14504669768336
[7] TAMIS J, VAN SCHOUTVENBURG G, KLEEREBEZEM R, et al. A full scale worm reactor for efficient sludge reduction by predation in a wastewater treatment plant[J]. Water Research, 2011, 45(18): 5916-5924. doi: 10.1016/j.watres.2011.08.046
[8] 郑向阳. AO工艺处理工业废水微生态特征动态解析[D]. 石家庄: 河北科技大学, 2017.
[9] 黄健. 间歇曝气条件下河流内源氮转化及微生物机制[D]. 合肥: 安徽大学, 2018.
[10] 刘文龙, 刘超, 沈琛, 等. 活性污泥长期好氧饥饿下的微生物种群结构演化[J]. 哈尔滨工业大学学报, 2019, 51(8): 20-27.
[11] 黄莹娜, 熊小毛, 胡远亮, 等. 基于PCR-DGGE和高通量测序分析白云边酒窖泥细菌群落结构与多样性[J]. 微生物学通报, 2017, 44(2): 375-383.
[12] 徐颖. 活性污泥在适应不同污水处理过程中微生物群落及功能的进化研究[D]. 新乡: 河南师范大学, 2013.
[13] 闫来洪, 张振冲, 郗丽君, 等. 不同活性污泥中菌群多样性及差异分析[J]. 化学与生物工程, 2016, 33(8): 57-62. doi: 10.3969/j.issn.1672-5425.2016.08.014
[14] NIIU T H, ZHOU Z, SHEN X L, et al. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process[J]. Water Research, 2016, 90: 369-377. doi: 10.1016/j.watres.2015.12.050
[15] ZHOU Z, QIAO W M, XING C, et al. A micro-aerobic hydrolysis process for sludge in situ reduction: Performance and microbial community structure[J]. Bioresource Technology, 2014, 173: 452-456. doi: 10.1016/j.biortech.2014.09.119
[16] MA Q, QU Y Y, ZHANG X W, et al. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants[J]. Microbiological Research, 2015, 175: 1-5. doi: 10.1016/j.micres.2014.12.013
[17] WEN Y, JIN Y X, WANG J Y, et al. MiSeq sequencing analysis of bacterial community structures in wastewater treatment plants[J]. Polish Sequencing Analysis of Bacterial Community, 2015, 24(4): 1809-1815.
[18] KONG Y H, XIA Y, NIELSEN J L, et al. Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant[J]. Microbiology, 2007, 153(12): 4061-4073. doi: 10.1099/mic.0.2007/007245-0
[19] HE Q L, ZHOU J, WANG H Y, et al. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor[J]. Bioresource Technology, 2016, 214: 1-8. doi: 10.1016/j.biortech.2016.04.088
[20] MA J X, WANG Z W, LI H, et al. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 5109-5121. doi: 10.1007/s00253-016-7312-3
[21] KIM J M, LEE H J, LEE D S, et al. Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus removal[J]. Applied and Environmental Microbiology, 2013, 79(6): 1969-1979. doi: 10.1128/AEM.03464-12
[22] 庄林杰, 夏超, 田晴, 等. 高通量测序技术研究典型湖泊岸边陆向深层土壤中厌氧氨氧化细菌的群落结构[J]. 环境科学学报, 2017, 37(1): 261-271.
[23] ZIELINSKA M, RUSANOWSKA P, JARZABEK J, et al. Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants[J]. Environmental Technology, 2016, 37(18): 2358-2367. doi: 10.1080/09593330.2016.1150350
[24] SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186: 163-172. doi: 10.1016/j.biortech.2015.03.072
[25] YE L, ZHANG T, WANG T T, et al. Microbial structures, functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing[J]. Environmental Science & Technology, 2012, 46: 13244-13252.
[26] KONG Q, WANG Z B, NIU P F, et al. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process[J]. Bioresource Technology, 2016, 210: 94-100. doi: 10.1016/j.biortech.2016.02.051
[27] 曾妮. 污水处理厂微生物群落结构及胞外聚合物组分分析[D]. 重庆: 重庆大学, 2015.
[28] 刘竹寒, 岳秀, 于广平, 等. CANON在SBAF中的快速启动及其微生物特征[J]. 环境科学, 2017, 38(1): 253-259.
[29] 吕志堂, 纪翠平, 苏强, 等. 3株反硝化聚磷菌的分离与鉴定[J]. 环境工程学报, 2009, 3(8): 1405-1408.
[30] 熊付娟. 反硝化除磷污泥除磷脱氮特性及菌群结构研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
[31] LI L P, TIAN Y, ZHANG J, et al. Enhanced denitrifying phosphorus removal and mass balance in a worm reactor[J]. Chemosphere, 2019, 226: 883-890. doi: 10.1016/j.chemosphere.2019.04.021