[1] WANG X, WANG Y G, SUN C H, et al. Formation mechanism and assessment method for urban black and odorous water body: A review[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1331-1340.
[2] 赵越, 姚瑞华, 徐敏, 等.我国城市黑臭水体治理实践及思路探讨[J]. 环境保护, 2015, 43(13): 27-29.
[3] LIAO W L, HUANG J S, DING J G, et al. Pollution status and remediation technologies of malodorous black water body in China[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(11): 153-158.
[4] 刘建福, 陈敬雄, 辜时有. 城市黑臭水体空气微生物污染及健康风险[J]. 环境科学, 2016, 37(4): 1264-1271.
[5] SONG C, LIU X L, SONG Y H, et al. Key blackening and stinking pollutants in Dongsha River of Beijing: spatial distribution and source identification[J]. Journal of Environmental Management, 2017, 200: 335-346.
[6] TANG W, SHAN B, ZHANG H, et al. Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China[J]. Scientific Reports, 2014, 4: 7152-7158.
[7] 王玉琳, 汪靓, 华祖林. 黑臭水体中不同浓度Fe2+、S2-与DO和水动力关系[J]. 中国环境科学, 2018, 38(2): 627-633.
[8] ARCO-LZARO E, AGUDO I, CLEMENTE R, et al. Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition[J]. Environmental Pollution, 2016, 216: 71-79.
[9] GAUR V K , GUPTA S K , PANDEY S D, et al. Distribution of heavy metals in sediment and water of river Gomti[J]. Environmental Monitoring and Assessment, 2005, 102(1/2/3): 419-433.
[10] 刘树娟, 陈磊, 钟润生, 等. 硝酸钙对河流底泥中含硫化合物嗅味原位控制[J]. 环境科学研究, 2012, 25(6): 691-698.
[11] TAO L L, LI P, DING J M, et al. The chemical coagulation-advanced oxidation composite process for treating sulfur-contained tannery wastewater[J]. Leather & Chemicals, 2011, 28(6): 8-10.
[12] 陈正勇, 王国祥, 杨飞, 等. Fenton试剂对富营养化湖水黑臭的氧化降解作用[J]. 环境工程学报,2012, 6(5):1591-1594.
[13] 杨华, 席劲瑛, 胡洪营, 等. 投加化学药剂改善城市黑臭河流水质的研究[J]. 环境科学与技术, 2012, 35(6I): 295-298.
[14] SHENG Y Q, QU Y X, Ding C F, et al. A combined application of different engineering and biological techniques to remediate a heavily polluted river[J]. Ecological Engineering, 2013, 57: 1-7.
[15] 吴霞, 谢悦波. 直接投菌法在城市重污染河流治理中的应用研究[J]. 环境工程学报, 2014, 8(8): 3331-3336.
[16] 涂玮灵, 胡湛波, 梁益聪, 等. 反硝化细菌修复城市黑臭河道底泥实验研究[J]. 环境工程, 2015, 33(10): 5-9.
[17] 宋晓兰, 张洁, 陈渊, 等. 微生物修复技术在苏南某黑臭河道的应用[J]. 环境科学与技术, 2014, 37(6N): 166-168.
[18] PAN M, ZHAO J, ZHEN S, et al. Effects of the combination of aeration and biofilm technology on transformation of nitrogen in black-odor river[J]. Water Science and Technology, 2016, 74(3): 655-662.
[19] CHEN J N, ZHANP, KOOPMAN B, et al. Bioaugmentation with Gordonia strain JW8 in treatment of pulp and paper wastewater[J]. Clean Technologies & Environmental Policy, 2012, 14(5): 899-904.
[20] 高丹英. 黑臭水净化菌株的筛选及净水效果的研究[D]. 武汉: 华中师范大学, 2009.
[21] DURAN M, TEPE N, YURTSEVER D, et al. Bioaugmenting anaerobic digestion of biosolids with selected strains of Bacillus, Pseudomonas, and Actinomycetes species for increased methanogenesis and odor control[J]. Applied Microbiology & Biotechnology, 2006, 73(4): 960-966.
[22] 何杰财. 固定化生物催化剂在河涌黑臭治理中的效能研究[D]. 广州: 华南理工大学, 2013.
[23] 黄菲菲. 组合微生物对黑臭水的净化研究[D]. 武汉: 华中师范大学, 2012.
[24] 赵志萍. 河流黑臭水体的微生物修复研究[D]. 杨凌: 西北农林科技大学, 2007.
[25] 徐熊鲤, 谢翼飞, 陈政阳, 等. 曝气强化微生物功能菌修复黑臭水体[J]. 环境工程学报, 2017, 11(8): 4559-4565.
[26] YU G W, QIU L, LEI H Y, et al. In situ biochemical technology to control black-odor of polluted sediments in tidal river[J]. Journal of Biotechnology, 2008, 136: 665.
[27] 叶姜瑜, 程士兵, 窦建军, 等. 高效降解黑臭废水细菌的筛选及鉴定[J]. 环境工程, 2012, 30(s2): 13-16.
[28] ZHUANG R Y, LOU Y J, QIU X T, et al. Identification of a yeast strain able to oxidize and remove sulfide high efficiently[J]. Applied Microbiology & Biotechnology, 2017, 101(1): 391-400.
[29] WANG G F, LI X N, FANG Y, et al. Analysis on the formation condition of the algae-induced odorous black water agglomerate[J]. Saudi Journal of Biological Sciences, 2014, 21(6): 597-604.
[30] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[31] HE D F, CHEN R R, ZHU E H, et al. Toxicity bioassays for water from black-odor rivers in Wenzhou, China[J]. Environmental Science & Pollution Research International, 2015, 22(3): 1731-1741.
[32] LI Z J, SONG L L, MA J Z, et al. The characteristics changes of pH and EC of atmospheric precipitation and analysis on the source of acid rain in the source area of the Yangtze River from 2010 to 2015[J]. Atmospheric Environment, 2017, 156: 61-69.
[33] 陈燕飞. pH对微生物的影响[J]. 太原师范学院学报(自然科学版), 2009, 8(3): 121-124.
[34] LIU C, HUANG X, WANG H. Start-up of a membrane bioreactor bioaugmented with genetically engineered microorganism for enhanced treatment of atrazine containing wastewater[J]. Desalination, 2008, 231(1): 12-19.
[35] PRADHAN S, RAI LC. Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+ by immobilized Microcystis [J]. World Journal of Microbiology & Biotechnology, 2000, 16(6): 579-584.
[36] 聂麦茜, 吴蔓莉, 王晓昌, 等. 一株黄杆菌及其粗酶液对芘降解的动力学特征研究[J]. 环境科学学报, 2006, 26(2):181-185.
[37] 李燕. 废水生物处理中溶解性微生物产物的产生及性质研究[D]. 南京: 南京大学, 2013.
[38] ADAMS C E, ECKENFEFELDER W W, HOVIOUS J C. A kinetic model for design of completely-mixed activated sludge treating variable-strength industrial wastewaters[J]. Water Research, 1975, 9(1): 37-42.
[39] MATHUR A K, MAJUMDER C B, CHATTERJEE S, et al. Biodegradation of pyridine by the new bacterial isolates S. putrefaciens and B. sphaericus[J]. Journal of Hazardous Materials, 2008, 157(2/3): 335-343.
[40] SHEN J Y, ZHANG X, CHEN D, et al. Kinetics study of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18[J]. Bioprocess and Biosystems Engineering, 2014, 37(6): 1185-1192.
[41] HAZRATI H, SHAYEGAN J, SEYEDI S M. Biodegradation kinetics and interactions of styrene and ethylbenzene as single and dual substrates for a mixed bacterial culture[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1):1-12.