[1] KUENEN J G. Anammox bacteria: From discovery to application[J]. Nature Reviews Microbiology, 2008, 6(4): 320-326.
[2] STROUS M, KUENEN J G, JETTEN M S M. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250.
[3] MULDERA, GRAFF L A VAN DE, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183.
[4] KUENEN J G, JETTEN M S M, STROUS M. New concepts of microbial treatment processes for the nitrogen removal in wastewaters[J]. FEMS Microbiology Reviews, 2003, 27(4): 481-492.
[5] KARTAL B, RATTRAY J, NIFTRIK L A VAN, et al. Candidatus Anammox oglobus propionicus a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1): 39-49.
[6] 丁敏, 黄勇, 袁怡,等. HCO3-浓度对厌氧氨氧化反应的影响[J]. 工业水处理 2015, 35(10): 35-38.
[7] 朱彤, 梁启煜, 谢元华, 等. 厌氧氨氧化过程中无机碳对脱氮效能的影响[J]. 2018, 39(2): 278-287.
[8] 鲍林林, 茹祥莉, 郭守德, 等. 无机碳对厌氧氨氧化反应的影响[J]. 河南师范大学学报(自然科学版), 2013, 41(4): 90-93.
[9] REARDON D J, FALK M W. Sustainability best practices to significantly reduce greenhouse gas and energy at your wastewater facility[J]. Proceedings of the Water Environment Federation, 2010, 13: 3347-3358.
[10] HAO X D, LIU R B, HUANG X. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87: 424-431.
[11] NANBA K, KING G M, DUNFIELD K. Analysis of facultative lithotrophic distribution and diversity on volcanic deposits by use of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase[J]. Applied and Environmental Microbiology, 2004, 70: 2245-2253.
[12] XU H H, TABITA F, Ribulose- R.1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Eric planktonic microorganisms[J]. Applied and Environmental Microbiology,1996, 62(6): 1913-1921.
[13] ELSAIED H, NAGANUMA T. Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms[J]. Applied and Environmental Microbiology, 2001, 67: 1751-1765.
[14] CALVIN M E. The path of carbon in photo synthesis[J]. Journal of Biological Chemistry, 1950, 185(2): 781-788.
[15] RAGSDALE S W. Enzymology of the acetyl-CoA pathway of CO2 fixation[J]. Critical Reviews in Biochemistry and Molecular Biology, 1991, 26(3/4): 261-300.
[16] BUCHANAN B B, Arnon D I. A reverse KREBS cycle in photosynthesis: Consensus at last[J]. Photosynthesis Research, 1990, 24(1): 47-53.
[17] HERTER S, BUSCH A, FUCHS G. L-malyl-coenzyme A lyase/beta-methylmalyl-coenzyme A lyase from Chloroflexus aurantiacus: A bifunctional enzyme involved in autotrophic CO2 fixation[J]. Journal of Bacteriology, 2002, 184(21): 5999-6006.
[18] 范宗理. 第五条固碳途径[J]. 自然杂志, 2008, 30(2): 93.
[19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[20] 吴鲜梅, 王敦球, 李亮, 等. 厌氧氨氧化污泥启动EGSB反应器研究[J]. 水处理技术, 2013, 39(2): 57-61.
[21] JETTEN M S M, CIRPUS I, KARTAL B, et al. 1994-2004: 10 years of research on the anaerobic oxidation of ammonium[J]. Biochemical Society Transactions, 2005, 33: 119-123.
[22] 谭发, 王敦球, 金樾, 等. 无机碳源对一体化厌氧氨氧化反应器脱氮性能的影响研究[J]. 水处理技术,2016, 42(6): 110-113.