[1] |
SENBOKU H, KATAYAMA A.Electrochemical carboxylation with carbon dioxide[J].Current Opinion in Green and Sustainable Chemistry,2017,3:50-54 10.1016/j.cogsc.2016.10.003
|
[2] |
BAJRACHARYA S, SRIKANTH S, MOHANAKRISHNA G, et al.Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects[J].Journal of Power Sources,2017,356:256-273 10.1016/j.jpowsour.2017.04.024
|
[3] |
LEHTINEN T, EFIMOVA E, TREMBLAY P, et al.Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process[J].Bioresource Technology,2017,243:30-36 10.1016/j.biortech.2017.06.073
|
[4] |
IBRAM G.Electrochemical conversion of carbon dioxide into renewable fuel chemicals:The role of nanomaterials and the commercialization[J].Renewable and Sustainable Energy Reviews,2016,59:1269-1297 10.1016/j.rser.2016.01.026
|
[5] |
QI S, HUANG X F, LIU J, et al.Biomimetic photoelectrocatalytic conversion of greenhouse gas carbon dioxide: Two-electron reduction for efficient formate production[J].Applied Catalysis B: Environmental,2017,201:70-76 10.1016/j.apcatb.2016.08.008
|
[6] |
BATLLE-VILANOVA P, GANIGUé R, RAMIó-PUJOL S, et al.Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction[J].Bioelectrochemistry,2017,117:57-64 10.1016/j.bioelechem.2017.06.004
|
[7] |
CHENG S, XING D, CALL D F, et al.Direct biological conversion of electrical current into methane by electromethanogenesis[J].Environmental Science & Technology,2009,43(10):3953-3958 10.1021/es803531g
|
[8] |
RISMANI-YAZDI H, CARVER S M, CHRISTY A D, et al.Cathodic limitations in microbial fuel cells: An overview[J].Journal of Power Sources,2008,180(2):683-694 10.1016/j.jpowsour.2008.02.074
|
[9] |
FAST A G, PAPOUTSAKIS E T.Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals[J].Current Opinion in Chemical Engineering,2012,1(4):380-395 10.1016/j.coche.2012.07.005
|
[10] |
SUGNAUX M, HAPPE M, CACHELIN C P, et al.Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell[J].Bioresource Technology,2016,221(Supplement C):61-69 10.1016/j.biortech.2016.09.020
|
[11] |
HASANY M, MARDANPOUR M M, YAGHMAEI S.Biocatalysts in microbial electrolysis cells: A review[J].International Journal of Hydrogen Energy,2016,41(3):1149-1477 10.1016/j.ijhydene.2015.10.097
|
[12] |
XIANG Y, LIU G, ZHANG R, et al.Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J].Bioresource Technology,2017,241(Supplement C):821-829 10.1016/j.biortech.2017.06.017
|
[13] |
BATLLE-VILANOVA P, GANIGUé R, RAMIó-PUJOL S, et al.Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction[J].Bioelectrochemistry,2017,117(Supplement C):57-64 10.1016/j.bioelechem.2017.06.004
|
[14] |
CALL D F, MERRILL M D, LOGAN B E.High surface area stainless steel brushes as cathodes in microbial electrolysis cells[J].Environmental Science & Technology, 2009,43(6):2179-2183 10.1021/es803074x
|
[15] |
GILCARRERA L, MEHTA P, ESCAPA A, et al.Optimizing the electrode size and arrangement in a microbial electrolysis cell[J].Bioresource Technology,2011,102(20):9593-9598 10.1016/j.biortech.2011.08.026
|
[16] |
RIVERA I, BAKONYI P, BUITRóN G.H2 production in membraneless bioelectrochemical cells with optimized architecture: The effect of cathode surface area and electrode distance[J].Chemosphere,2017,171:379-385 10.1016/j.chemosphere.2016.12.061
|
[17] |
杨仁灿,孙和临,杨梅宏. 气相色谱法测定MEC反应液中挥发性有机酸[J]. 化学研究与应用2017,29(7):962-967
|
[18] |
BAJRACHARYA S, TER H A, DOMINGUEZ B X, et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode[J].Bioresource Technology,2015,195:14-24 10.1016/j.biortech.2015.05.081
|
[19] |
VILLANO M, AULENTA F, CIUCCI C, et al.Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic cultureerostructure arrays[J].Journal of Physical Chemistry C,2013,117:11553-15523 10.1021/jp4039573
|
[20] |
HAMELERS H V, TER H A, SLEUTELS T H, et al.New applications and performance of bioelectrochemicalsystems[J].Applied Microbiology and Biotechnology,2010,85(6):1673-1685 10.1007/s00253-009-2357-1
|
[21] |
ZHAO H Z, ZHANG Y, CHANG Y Y, et al.Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells[J].Journal of Power Sources,2012,217(11):59-64 10.1016/j.jpowsour.2012.06.014
|
[22] |
ZHAO H, ZHANG Y, ZHAO B, et al.Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode[J].Environmental Science & Technology,2012,46(9):5024-5198 10.1021/es300186f
|
[23] |
LOGAN B E, CALL D, CHENG S, et al.Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J].Environmental Science & Technology,2008,42(23):8630-8864 10.1021/es801553z
|
[24] |
JIANG Y, SU M, ZHANG Y, et al.Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate[J].International Journal of Hydrogen Energy,2013,38(8):3497-3502 10.1016/j.ijhydene.2012.12.107
|
[25] |
NEVIN K P, HENSLEY S A, FRANKS A E, et al.Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenicmicroorganisms[J].Applied and Environmental Microbiology,2011,77:2882-2886 10.1128/AEM.02642-10
|
[26] |
BAJRACHARYA S, TER H A, DOMINGUEZ B X, et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless
|