阴极大小对微生物电合成系统还原二氧化碳产有机物的影响

张鹏程, 王黎, 陈小进, 胡宁, 李洋洋. 阴极大小对微生物电合成系统还原二氧化碳产有机物的影响[J]. 环境工程学报, 2018, 12(12): 3531-3539. doi: 10.12030/j.cjee.201806132
引用本文: 张鹏程, 王黎, 陈小进, 胡宁, 李洋洋. 阴极大小对微生物电合成系统还原二氧化碳产有机物的影响[J]. 环境工程学报, 2018, 12(12): 3531-3539. doi: 10.12030/j.cjee.201806132
ZHANG Pengcheng, WANG Li, CHEN Xiaojin, HU Ning, LI Yangyang. Effect of cathode size on the production of organic matter from carbon dioxide by microbial electrosynthesis system[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3531-3539. doi: 10.12030/j.cjee.201806132
Citation: ZHANG Pengcheng, WANG Li, CHEN Xiaojin, HU Ning, LI Yangyang. Effect of cathode size on the production of organic matter from carbon dioxide by microbial electrosynthesis system[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3531-3539. doi: 10.12030/j.cjee.201806132

阴极大小对微生物电合成系统还原二氧化碳产有机物的影响

  • 基金项目:

    国家自然科学基金资助项目(51574185)

Effect of cathode size on the production of organic matter from carbon dioxide by microbial electrosynthesis system

  • Fund Project:
  • 摘要: 利用微生物电合成系统(microbial electrosynthesis system,MES)还原CO2合成有附加值的有机物是环境领域的热门研究方向。使用微生物电合成系统,驯化富集具有电化学活性的阴极功能微生物,通过调整阴极的大小,评价其对CO2还原的影响。设定阴极电势-0.8 V (vs Ag/AgCl),保持阳极面积为32 cm2,调整阴极面积大小。在64 cm2的阴极面积下,MES可以获得最大的有机物产量和最佳性能,电流密度可达到2.03 A·m-2,乙酸、丁酸的最大积累量分别为262.04 mg·L-1和87.63 mg·L-1,总库伦效率达到91%。扫描电镜SEM分析表明,阴极碳毡上菌体数量较多,多为杆状菌和球菌。高通量菌群分析表明,Clostridium、Butyribacterium和Geobacter是MES阴极生物膜上的优势菌属,其丰度分别占总菌群的48.13%、7.8%和8.2%。在保证较小阳极面积的同时,适当增大阴极面积,确实可以提高MES还原CO2合成有机物的产量及提升系统的库伦效率。
  • 加载中
  • [1] SENBOKU H, KATAYAMA A.Electrochemical carboxylation with carbon dioxide[J].Current Opinion in Green and Sustainable Chemistry,2017,3:50-54 10.1016/j.cogsc.2016.10.003
    [2] BAJRACHARYA S, SRIKANTH S, MOHANAKRISHNA G, et al.Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects[J].Journal of Power Sources,2017,356:256-273 10.1016/j.jpowsour.2017.04.024
    [3] LEHTINEN T, EFIMOVA E, TREMBLAY P, et al.Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process[J].Bioresource Technology,2017,243:30-36 10.1016/j.biortech.2017.06.073
    [4] IBRAM G.Electrochemical conversion of carbon dioxide into renewable fuel chemicals:The role of nanomaterials and the commercialization[J].Renewable and Sustainable Energy Reviews,2016,59:1269-1297 10.1016/j.rser.2016.01.026
    [5] QI S, HUANG X F, LIU J, et al.Biomimetic photoelectrocatalytic conversion of greenhouse gas carbon dioxide: Two-electron reduction for efficient formate production[J].Applied Catalysis B: Environmental,2017,201:70-76 10.1016/j.apcatb.2016.08.008
    [6] BATLLE-VILANOVA P, GANIGUé R, RAMIó-PUJOL S, et al.Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction[J].Bioelectrochemistry,2017,117:57-64 10.1016/j.bioelechem.2017.06.004
    [7] CHENG S, XING D, CALL D F, et al.Direct biological conversion of electrical current into methane by electromethanogenesis[J].Environmental Science & Technology,2009,43(10):3953-3958 10.1021/es803531g
    [8] RISMANI-YAZDI H, CARVER S M, CHRISTY A D, et al.Cathodic limitations in microbial fuel cells: An overview[J].Journal of Power Sources,2008,180(2):683-694 10.1016/j.jpowsour.2008.02.074
    [9] FAST A G, PAPOUTSAKIS E T.Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals[J].Current Opinion in Chemical Engineering,2012,1(4):380-395 10.1016/j.coche.2012.07.005
    [10] SUGNAUX M, HAPPE M, CACHELIN C P, et al.Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell[J].Bioresource Technology,2016,221(Supplement C):61-69 10.1016/j.biortech.2016.09.020
    [11] HASANY M, MARDANPOUR M M, YAGHMAEI S.Biocatalysts in microbial electrolysis cells: A review[J].International Journal of Hydrogen Energy,2016,41(3):1149-1477 10.1016/j.ijhydene.2015.10.097
    [12] XIANG Y, LIU G, ZHANG R, et al.Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J].Bioresource Technology,2017,241(Supplement C):821-829 10.1016/j.biortech.2017.06.017
    [13] BATLLE-VILANOVA P, GANIGUé R, RAMIó-PUJOL S, et al.Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction[J].Bioelectrochemistry,2017,117(Supplement C):57-64 10.1016/j.bioelechem.2017.06.004
    [14] CALL D F, MERRILL M D, LOGAN B E.High surface area stainless steel brushes as cathodes in microbial electrolysis cells[J].Environmental Science & Technology, 2009,43(6):2179-2183 10.1021/es803074x
    [15] GILCARRERA L, MEHTA P, ESCAPA A, et al.Optimizing the electrode size and arrangement in a microbial electrolysis cell[J].Bioresource Technology,2011,102(20):9593-9598 10.1016/j.biortech.2011.08.026
    [16] RIVERA I, BAKONYI P, BUITRóN G.H2 production in membraneless bioelectrochemical cells with optimized architecture: The effect of cathode surface area and electrode distance[J].Chemosphere,2017,171:379-385 10.1016/j.chemosphere.2016.12.061
    [17] 杨仁灿,孙和临,杨梅宏. 气相色谱法测定MEC反应液中挥发性有机酸[J]. 化学研究与应用2017,29(7):962-967
    [18] BAJRACHARYA S, TER H A, DOMINGUEZ B X, et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode[J].Bioresource Technology,2015,195:14-24 10.1016/j.biortech.2015.05.081
    [19] VILLANO M, AULENTA F, CIUCCI C, et al.Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic cultureerostructure arrays[J].Journal of Physical Chemistry C,2013,117:11553-15523 10.1021/jp4039573
    [20] HAMELERS H V, TER H A, SLEUTELS T H, et al.New applications and performance of bioelectrochemicalsystems[J].Applied Microbiology and Biotechnology,2010,85(6):1673-1685 10.1007/s00253-009-2357-1
    [21] ZHAO H Z, ZHANG Y, CHANG Y Y, et al.Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells[J].Journal of Power Sources,2012,217(11):59-64 10.1016/j.jpowsour.2012.06.014
    [22] ZHAO H, ZHANG Y, ZHAO B, et al.Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode[J].Environmental Science & Technology,2012,46(9):5024-5198 10.1021/es300186f
    [23] LOGAN B E, CALL D, CHENG S, et al.Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J].Environmental Science & Technology,2008,42(23):8630-8864 10.1021/es801553z
    [24] JIANG Y, SU M, ZHANG Y, et al.Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate[J].International Journal of Hydrogen Energy,2013,38(8):3497-3502 10.1016/j.ijhydene.2012.12.107
    [25] NEVIN K P, HENSLEY S A, FRANKS A E, et al.Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenicmicroorganisms[J].Applied and Environmental Microbiology,2011,77:2882-2886 10.1128/AEM.02642-10
    [26] BAJRACHARYA S, TER H A, DOMINGUEZ B X, et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless
  • 加载中
计量
  • 文章访问数:  2218
  • HTML全文浏览数:  2060
  • PDF下载数:  110
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-29

阴极大小对微生物电合成系统还原二氧化碳产有机物的影响

  • 1. 武汉科技大学资源与环境工程学院,武汉 430081
基金项目:

国家自然科学基金资助项目(51574185)

摘要: 利用微生物电合成系统(microbial electrosynthesis system,MES)还原CO2合成有附加值的有机物是环境领域的热门研究方向。使用微生物电合成系统,驯化富集具有电化学活性的阴极功能微生物,通过调整阴极的大小,评价其对CO2还原的影响。设定阴极电势-0.8 V (vs Ag/AgCl),保持阳极面积为32 cm2,调整阴极面积大小。在64 cm2的阴极面积下,MES可以获得最大的有机物产量和最佳性能,电流密度可达到2.03 A·m-2,乙酸、丁酸的最大积累量分别为262.04 mg·L-1和87.63 mg·L-1,总库伦效率达到91%。扫描电镜SEM分析表明,阴极碳毡上菌体数量较多,多为杆状菌和球菌。高通量菌群分析表明,Clostridium、Butyribacterium和Geobacter是MES阴极生物膜上的优势菌属,其丰度分别占总菌群的48.13%、7.8%和8.2%。在保证较小阳极面积的同时,适当增大阴极面积,确实可以提高MES还原CO2合成有机物的产量及提升系统的库伦效率。

English Abstract

参考文献 (26)

目录

/

返回文章
返回