Figure 8 ,Table 2
    • 图  1  电催化Cu-EDTA解络反应装置图

      Figure 1.  Schematic diagram for electrocatalytic decomplexation of Cu-EDTA

    • 图  2  焙烧温度对Cu-EDTA解络率、能耗和粒子电极使用前后晶体结构的影响

      Figure 2.  Effect of calcination temperature on Cu-EDTA decomplexation efficiency, energy consumption, crystal structure of particle electrode before and after use

    • 图  3  焙烧时间对Cu-EDTA解络率、能耗和粒子电极使用前后晶体结构的影响

      Figure 3.  Effect of calcination time on Cu-EDTA decomplexation efficiency, energy consumption, crystal structure of particle electrode before and after use

    • 图  4  PAC与GO质量比对Cu-EDTA解络率和能耗的影响

      Figure 4.  Effect of mass ratio of PAC to GO on Cu-EDTA decomplexation efficiency and energy consumption

    • 图  5  Ni/GO0.2-PAC0.8使用前后的SEM图

      Figure 5.  SEM images of Ni/GO0.2-PAC0.8 before and after use

    • 图  6  Ni/GO0.2-PAC0.8 系统中的Cu-EDTA、TCCu解络率和TCu回收率以及相应的反应动力学

      Figure 6.  Decomplexation efficiency of Cu-EDTA, TCCu and recovery efficiency of TCu, and corresponding reaction kinetics in Ni/GO0.2-PAC0.8 system

    • 图  7  Ni/GO0.2-PAC0.8系统中DMPO-OH的ESR谱图和淬灭剂对TCCu解络率的影响

      Figure 7.  ESR spectra of DMPO-OH and effect of quencher on the decomplexation efficiency of TCCu in Ni/GO0.2-PAC0.8 system

    • 图  8  Ni/GO0.2-PAC0.8在Cu-EDTA、EDTA和CuSO4溶液中的循环伏安曲线

      Figure 8.  Cyclic voltammetry curves of Ni/GO0.2-PAC0.8 in Cu-EDTA, EDTA and CuSO4 solutions