Figure 8 ,Table 8
    • 图  1  微波加热和传统加热的机理[30]

      Figure 1.  Mechanisms of microwave heating and conventional heating[30]

    • 图  2  微波加热下碳材料相内电子位移的机理[51]

      Figure 2.  Schematic representation of the displacement of electrons under microwave heating[51]

    • 图  3  微波-金属放电现象及不同类型放电的伏安特性[52]

      Figure 3.  Microwave-metal discharge phenomenon and the schematic current-voltage characteristics of the different types of discharges[52]

    • 图  4  常规热解和微波控温热解下重质有机分子及有毒化合物分子的产量对比[53]

      Figure 4.  Volume of heavy molecules and toxic compounds generated at different target temperature with microwave heating[53]

    • 图  5  微波强化还原反应的模型示意图[115]

      Figure 5.  Schematic of models of microwave-enhanced reductive reaction[115]

    • 图  6  微波热解下三元正极材料与生物质耦合碳热还原的机理示意图[84]

      Figure 6.  Mechanism of microwave pyrolysis of biomass for efficient recycling lithium from spent lithium-ion batteries[84]

    • 图  7  锂离子电池容量损失的过程机理的示意图[131]

      Figure 7.  Schematic process of capacity fade process of lithium-ion battery[131]

    • 图  8  沿(a)[100]、(b)[010]、(c)[001]轴观察的LiCoPO4橄榄石晶体Pnma空间群结构的多面体展示[162]

      Figure 8.  Polyhedral representation of the olivine crystal structure (space group Pnma) of LiCoPO4 viewed along the (a)[100], (b)[010], and (c)[001] axes[162]