氧化石墨烯-纳米银对山羊胎儿成纤维细胞中lncRNA表达谱的影响

宋志贤, 刘松子, 鲍思璇, 张启鹏, 孔桂美, 袁玉国. 氧化石墨烯-纳米银对山羊胎儿成纤维细胞中lncRNA表达谱的影响[J]. 生态毒理学报, 2024, 19(6): 292-299. doi: 10.7524/AJE.1673-5897.20240619003
引用本文: 宋志贤, 刘松子, 鲍思璇, 张启鹏, 孔桂美, 袁玉国. 氧化石墨烯-纳米银对山羊胎儿成纤维细胞中lncRNA表达谱的影响[J]. 生态毒理学报, 2024, 19(6): 292-299. doi: 10.7524/AJE.1673-5897.20240619003
SONG Zhixian, LIU Songzi, BAO Sixuan, ZHANG Qipeng, KONG Guimei, YUAN Yuguo. Effect of Graphene Oxide-Silver Nanoparticles on lncRNA Expression Pattern in Caprine Fetal Fibroblast Cells[J]. Asian journal of ecotoxicology, 2024, 19(6): 292-299. doi: 10.7524/AJE.1673-5897.20240619003
Citation: SONG Zhixian, LIU Songzi, BAO Sixuan, ZHANG Qipeng, KONG Guimei, YUAN Yuguo. Effect of Graphene Oxide-Silver Nanoparticles on lncRNA Expression Pattern in Caprine Fetal Fibroblast Cells[J]. Asian journal of ecotoxicology, 2024, 19(6): 292-299. doi: 10.7524/AJE.1673-5897.20240619003

氧化石墨烯-纳米银对山羊胎儿成纤维细胞中lncRNA表达谱的影响

    作者简介: 宋志贤(2004—),男,本科生,主要研究方向为功能纳米毒性学,E-mail:3205213248@qq.com
    通讯作者: 孔桂美(1978—),女,博士,副教授,主要研究方向为肿瘤发病机制的研究。E-mail:gmkong@yzu.edu.cn;  袁玉国(1978-),男,博士,副教授,主要研究方向为功能纳米材料抗菌与抗肿瘤的研究。E-mail:yyg9776430@163.com
  • 基金项目:

    江苏省种业振兴“揭榜挂帅”项目(JBGS〔2021〕025);江苏高校优势学科建设工程资助项目(PAPD);扬州大学教改课题(YZUJX2020-D30),高等学校学科创新引智计划资助项目(D18007);扬州市市校合作专项(YZ2023205)

  • 中图分类号: X171.5

Effect of Graphene Oxide-Silver Nanoparticles on lncRNA Expression Pattern in Caprine Fetal Fibroblast Cells

    Corresponding authors: KONG Guimei ;  YUAN Yuguo
  • Fund Project:
  • 摘要: 研究了低剂量氧化石墨烯-纳米银(graphene oxide-silver nanoparticles, GO-AgNPs)长期暴露对动物胚胎细胞lncRNA表达影响的表观遗传毒性机制。试验以0(对照组)或0.5 μg·mL-1(处理组)GO-AgNPs浓度连续处理山羊胎儿成纤维细胞70 d,提取细胞RNA进行转录组测序,对差异lncRNA进行GO功能注释和KEGG信号通路富集进行分析,并用qRT-PCR方法对差异表达基因进行验证。与对照组相比,处理组共有167个显著差异的lncRNA,其中72个上调,95个下调。GO功能注释表明差异基因与单生物细胞过程(single-organism cellular process)、组织迁移(tissue migration)和细胞成分运动调节(regulation of cellular component movement)等相关;KEGG信号通路富集分析表明,差异表达lncRNA主要富集于白细胞介素-2生物合成过程等。以上结果说明非致死量GO-AgNPs长期暴露可诱导山羊胎儿成纤维细胞lncRNA表达谱的变化。
  • 加载中
  • Lazǎr A I, Aghasoleimani K, Semertsidou A, et al. Graphene-related nanomaterials for biomedical applications[J]. Nanomaterials, 2023, 13(6): 1092
    Dos Santos M S, Antunes Filho S, Backx B P. Bionanotechnology in agriculture: A one health approach[J]. Life, 2023, 13(2): 509
    Ghulam A N, dos Santos O A L, Hazeem L, et al. Graphene oxide (GO) materials-applications and toxicity on living organisms and environment[J]. Journal of Functional Biomaterials, 2022, 13(2): 77
    Dugershaw B B, Aengenheister L, Hansen S S K, et al. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials[J]. Particle and Fibre Toxicology, 2020, 17(1): 31
    Qi M Y, Wang X D, Chen J H, et al. Transformation, absorption and toxicological mechanisms of silver nanoparticles in the gastrointestinal tract following oral exposure[J]. ACS Nano, 2023, 17(10): 8851-8865
    Assar D H, Mokhbatly A A, ELazab M F A, et al. Silver nanoparticles induced testicular damage targeting NQO1 and APE1 dysregulation, apoptosis via Bax/Bcl-2 pathway, fibrosis via TGF-β/α-SMA upregulation in rats[J]. Environmental Science and Pollution Research, 2023, 30(10): 26308-26326
    Ema M, Gamo M, Honda K. Developmental toxicity of engineered nanomaterials in rodents[J]. Toxicology and Applied Pharmacology, 2016, 299: 47-52
    González-Vega J G, García-Ramos J C, Chavez-Santoscoy R A, et al. Lung models to evaluate silver nanoparticles’ toxicity and their impact on human health[J]. Nanomaterials, 2022, 12(13): 2316
    Jia P P, Sun T, Junaid M, et al. Chronic exposure to graphene oxide (GO) induced inflammation and differentially disturbed the intestinal microbiota in zebrafish[J]. Environmental Science: Nano, 2019, 6(8): 2452-2469
    Pelin M, Fusco L, León V, et al. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes[J]. Scientific Reports, 2017, 7: 40572
    Yu J, Loh X J, Luo Y F, et al. Insights into the epigenetic effects of nanomaterials on cells[J]. Biomaterials Science, 2020, 8(3): 763-775
    Gliga A R, Di Bucchianico S, Lindvall J, et al. RNA-sequencing reveals long-term effects of silver nanoparticles on human lung cells[J]. Scientific Reports, 2018, 8(1): 6668
    Choo W H, Park C H, Jung S E, et al. Long-term exposures to low doses of silver nanoparticles enhanced in vitro malignant cell transformation in non-tumorigenic BEAS-2B cells[J]. Toxicology in Vitro, 2016, 37: 41-49
    Vila L, Marcos R, Hernández A. Long-term effects of silver nanoparticles in caco-2 cells[J]. Nanotoxicology, 2017, 11(6): 771-780
    Yuan Y G, Xing Y T, Liu S Z, et al. Identification of circular RNAs expression pattern in caprine fetal fibroblast cells exposed to a chronic non-cytotoxic dose of graphene oxide-silver nanoparticle nanocomposites[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1090814
    Ghazimoradi M M, Ghorbani M H, Ebadian E, et al. Epigenetic effects of graphene oxide and its derivatives: A mini-review[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2022, 878: 503483
    Wu Q L, Zhou X F, Han X X, et al. Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide[J]. Biomaterials, 2016, 102: 277-291
    Yuan Y G, Cai H Q, Wang J L, et al. Graphene oxide-silver nanoparticle nanocomposites induce oxidative stress and aberrant methylation in caprine fetal fibroblast cells[J]. Cells, 2021, 10(3): 682
    Yuan Y G, Zhang Y X, Liu S Z, et al. Multiple RNA profiling reveal epigenetic toxicity effects of oxidative stress by graphene oxide silver nanoparticles in-vitro[J]. International Journal of Nanomedicine, 2023, 18: 2855-2871
    Abdel-Megeed R M, Ali S A, Khalil W B, et al. Mitigation of apoptosis-mediated neurotoxicity induced by silver nanoparticles via Rutaceae nutraceuticals: P53 activation and Bax/bcl-2 regulation[J]. Toxicology Reports, 2022, 9: 2055-2063
    Braeuning A, Oberemm A, Görte J, et al. Comparative proteomic analysis of silver nanoparticle effects in human liver and intestinal cells[J]. Journal of Applied Toxicology, 2018, 38(5): 638-648
    Zhao L, Wang S Y, Ilves M, et al. Transcriptomic profiling the effects of airway exposure of zinc oxide and silver nanoparticles in mouse lungs[J]. International Journal of Molecular Sciences, 2023, 24(6): 5183
    Tao L, Chen X, Sun J W, et al. Silver nanoparticles achieve cytotoxicity against breast cancer by regulating long-chain noncoding RNA XLOC006390-mediated pathway[J]. Toxicology Research, 2021, 10(1): 123-133
    Ema M, Kobayashi N, Naya M, et al. Reproductive and developmental toxicity studies of manufactured nanomaterials[J]. Reproductive Toxicology, 2010, 30(3): 343-352
    Maciejewski R, Radzikowska-Büchner E, Flieger W, et al. An overview of essential microelements and common metallic nanoparticles and their effects on male fertility[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 11066
    Austin C A, Hinkley G K, Mishra A R, et al. Distribution and accumulation of 10 nm silver nanoparticles in maternal tissues and visceral yolk sac of pregnant mice, and a potential effect on embryo growth[J]. Nanotoxicology, 2016, 10(6): 654-661
    Becaro A A, de Oliveira L P, de Castro V L S, et al. Effects of silver nanoparticles prenatal exposure on rat offspring development[J]. Environmental Toxicology and Pharmacology, 2021, 81: 103546
  • 加载中
计量
  • 文章访问数:  280
  • HTML全文浏览数:  280
  • PDF下载数:  56
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-06-19
宋志贤, 刘松子, 鲍思璇, 张启鹏, 孔桂美, 袁玉国. 氧化石墨烯-纳米银对山羊胎儿成纤维细胞中lncRNA表达谱的影响[J]. 生态毒理学报, 2024, 19(6): 292-299. doi: 10.7524/AJE.1673-5897.20240619003
引用本文: 宋志贤, 刘松子, 鲍思璇, 张启鹏, 孔桂美, 袁玉国. 氧化石墨烯-纳米银对山羊胎儿成纤维细胞中lncRNA表达谱的影响[J]. 生态毒理学报, 2024, 19(6): 292-299. doi: 10.7524/AJE.1673-5897.20240619003
SONG Zhixian, LIU Songzi, BAO Sixuan, ZHANG Qipeng, KONG Guimei, YUAN Yuguo. Effect of Graphene Oxide-Silver Nanoparticles on lncRNA Expression Pattern in Caprine Fetal Fibroblast Cells[J]. Asian journal of ecotoxicology, 2024, 19(6): 292-299. doi: 10.7524/AJE.1673-5897.20240619003
Citation: SONG Zhixian, LIU Songzi, BAO Sixuan, ZHANG Qipeng, KONG Guimei, YUAN Yuguo. Effect of Graphene Oxide-Silver Nanoparticles on lncRNA Expression Pattern in Caprine Fetal Fibroblast Cells[J]. Asian journal of ecotoxicology, 2024, 19(6): 292-299. doi: 10.7524/AJE.1673-5897.20240619003

氧化石墨烯-纳米银对山羊胎儿成纤维细胞中lncRNA表达谱的影响

    通讯作者: 孔桂美(1978—),女,博士,副教授,主要研究方向为肿瘤发病机制的研究。E-mail:gmkong@yzu.edu.cn;  袁玉国(1978-),男,博士,副教授,主要研究方向为功能纳米材料抗菌与抗肿瘤的研究。E-mail:yyg9776430@163.com
    作者简介: 宋志贤(2004—),男,本科生,主要研究方向为功能纳米毒性学,E-mail:3205213248@qq.com
  • 1. 扬州大学医学院, 扬州 225009;
  • 2. 江苏省动物重要疫病与人兽共患病防控协同创新中心, 扬州 225009
基金项目:

江苏省种业振兴“揭榜挂帅”项目(JBGS〔2021〕025);江苏高校优势学科建设工程资助项目(PAPD);扬州大学教改课题(YZUJX2020-D30),高等学校学科创新引智计划资助项目(D18007);扬州市市校合作专项(YZ2023205)

摘要: 研究了低剂量氧化石墨烯-纳米银(graphene oxide-silver nanoparticles, GO-AgNPs)长期暴露对动物胚胎细胞lncRNA表达影响的表观遗传毒性机制。试验以0(对照组)或0.5 μg·mL-1(处理组)GO-AgNPs浓度连续处理山羊胎儿成纤维细胞70 d,提取细胞RNA进行转录组测序,对差异lncRNA进行GO功能注释和KEGG信号通路富集进行分析,并用qRT-PCR方法对差异表达基因进行验证。与对照组相比,处理组共有167个显著差异的lncRNA,其中72个上调,95个下调。GO功能注释表明差异基因与单生物细胞过程(single-organism cellular process)、组织迁移(tissue migration)和细胞成分运动调节(regulation of cellular component movement)等相关;KEGG信号通路富集分析表明,差异表达lncRNA主要富集于白细胞介素-2生物合成过程等。以上结果说明非致死量GO-AgNPs长期暴露可诱导山羊胎儿成纤维细胞lncRNA表达谱的变化。

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回