-
PM2.5 (空气动力当量直径小于或等于2.5 μm的颗粒物)是发生雾霾事件的主要原因[1 − 2],是各种潜在污染源如汽车尾气、工业生产和煤炭燃烧等排放污染物的混合物[3 − 4]. PM2.5不仅影响大气能见度[2],而且严重威胁到人类的健康,长期暴露于细颗粒物污染会增加呼吸道、心血管和肾脏疾病的风险[1,5],尤其是PM2.5中具有病理学和毒性的重金属元素,如Cr、As、Cd和Ni等对人体具有一定的致癌作用[6],过度积累会导致人体出现一系列疾病[7 − 8]. 随着经济的快速发展,中国的空气污染,特别是城市区域的空气污染,已经成为严重的环境问题[7 − 9],而且城区人为污染源(如机动车排放和化石燃料的燃烧)排放的污染物可通过区域或长距离传输对背景或高山地区的PM2.5产生影响[10].
近年来,国内外对PM2.5中元素的污染特征、生态风险和健康风险进行了大量研究[6,9,11],大多集中在人口密集的城市. 雷文凯等[6]研究了保定市PM2.5中重金属元素的健康风险,其中As和Cr存在致癌风险,且成人明显高于儿童. 何瑞东等[9]评价了郑州市大气PM2.5中重金属元素的生态风险和健康风险,Cd元素不仅生态风险极强,而且还存在致癌风险. Zhang等[11]对日本北九州PM2.5中重金属进行了生态风险和健康风险评估,Se是生态风险贡献最高的重金属,As既存在非致癌风险又有致癌风险. 国内在高山和背景地区的研究大多集中在PM2.5的质量浓度、化学特征和来源分析[12 − 14]. Zhang等[15]在夏季对中国青藏高原东北部青海湖景区PM2.5的研究,确定了其化学成分和主要来源. 苏彬彬等[16]研究结果显示武夷山夏季PM2.5浓度最低(15 μg·m−3),春季最高(31 μg·m−3). Qie等[12]在泰山顶部对PM2.5中微量元素的来源解析表明,煤炭燃烧和机动车排放是微量元素的主要排放源. 目前,对高山地区PM2.5中重金属的研究较少,特别是针对重金属的生态风险和健康风险评估方面的研究相对较少.
武当山位于湖北省西北部的十堰市,地处鄂、豫、渝、陕交界地带,属华中地区城市群区域大气本底,武当山海拔高度为1612 m,受到本地污染源的影响较小,主要受长距离输送或区域传输的影响,可以代表华中地区的大气污染的区域背景状况[16 − 18]. 本研究于2018年夏季在武当山开展PM2.5滤膜样品的采集和分析,采用富集因子法探讨18种金属元素(Na、K、Ca、Mg、Al、Fe、V、Cr、Mo、Cu、Zn、Mn、Ni、As、Se、Cd、Ba和Pb)的富集程度和污染水平,利用生态风险评估方法(NIRI)和美国环保署(EPA)开发的健康风险评价模型对武当山大气PM2.5中元素的潜在生态风险和呼吸吸入途径的健康风险做出评价. 通过研究武当山细颗粒物中有毒有害重金属对生态环境和人体健康的影响,可为研究华中地区大气重金属污染特征和健康影响提供科学参考,为华中地区大气重金属风险防控提供理论依据.
高山地区夏季大气PM2.5中元素的污染特征、生态风险及健康风险评估——以武当山为例
Pollution characteristics, ecological risk and health risk assessment of PM2.5 -bound elemental species at mountain site in summer: A case study of Mt.Wudang
-
摘要: 为了解华中高山地区夏季大气PM2.5中元素的污染特征,于2018年6月在湖北省十堰市武当山国家空气质量监测站采集PM2.5样品,利用电感耦合等离子体质谱仪(ICP-MS)测定样品中18种元素(Na、K、Ca、Mg、Al、Fe、V、Cr、Mo、Cu、Zn、Mn、Ni、As、Se、Cd、Ba和Pb)的浓度,并探讨了其来源、生态风险和健康风险. 结果表明,武当山PM2.5的日均浓度范围为5.00—33.65 μg·m-3,平均浓度为(16.84±7.07) μg·m-3;元素K、Na、Fe、Ca、Al、Mg和Zn的浓度较高,7种元素占所分析元素的97.68%以上;富集因子结果表明,Mo、Zn、Pb、Cd和Se的EF值高于100,可能受周边人为活动排放污染物的区域或长距离传输影响;主成分-多元线性回归(PCA-MLR)结果表明,PM2.5中元素主要来自于燃煤和机动车(57.57%)、工业源(22.52%)和地壳(19.91%);武当山PM2.5重金属的生态风险指数极高,其中Cd、Se和Mo的潜在生态危害程度极强;健康风险评估显示,综合非致癌风险(HI)在儿童和成人中分别为2.28×10-2和3.04×10-2,均在可接受水平内,综合致癌风险(CRT)在儿童和成人中分别为4.45×10-7和2.37×10-6,说明成人存在潜在的致癌风险;Cr在成人中的致癌风险为1.88×10-6,说明Cr在成人中存在潜在的致癌风险,同种金属对人体的非致癌风险和致癌风险均表现为成人>儿童.Abstract: To understand the pollution characteristics of PM2.5-bound elemental species at mountain site in summer, PM2.5 samples were collected at the Mt.Wudang National Air Quality Monitoring Station in Shiyan of Hubei Province in June 2018. The concentrations of 18 elements (Na, K, Ca, Mg, Al, Fe, V, Cr, Mo, Cu, Zn, Mn, Ni, As, Se, Cd, Ba and Pb) in PM2.5 were determined by inductively coupled plasma mass spectrometer (ICP-MS), and the sources, ecological and health risks were discussed. The results showed that the concentration of PM2.5 during observation period at Mt.Wudang were ranged from 5.00 μg·m-3 to 33.65 μg·m-3, with an average value of (16.84±7.07) μg·m-3. K, Na, Fe, Ca, Al, Mg and Zn) was the main elements accounting for 97.68% of all detected elements. The enrichment factor (EF) values showed that the EF values of Mo, Zn, Pb, Cd and Se were higher than 100, which may be affected by the regional or long-range transport of pollutants emitted from human activities. The principal component analysis-multiple linear regression (PCA-MLR) showed that the elements species of PM2.5 mainly come from coal burning and motor vehicles (57.57%), industrial production (22.52%) and crustal sources (19.91%). The ecological risk index of heavy metals in PM2.5 at Mt.Wudang is extremely high and Cd, Se and Mo have a very high degree of potential ecological damage. The health risk assessment showed that the comprehensive non-carcinogenic risks (HI) were 2.28×10-2 and 3.04×10-2 for children and adults, respectively, which are within the acceptable level. The comprehensive carcinogenic risks (CRT) were 4.45×10-7 and 2.37×10-6 for children and adults, respectively, indicating heavy metal had potential carcinogenic risk for adults. The carcinogenic risk of Cr for adults is 1.88×10-6, indicating that Cr has potential carcinogenic risk in adults. The non-carcinogenic risk and carcinogenic risk to human body followed the order of adults > children.
-
表 1 潜在生态风险分级
Table 1. Classification criteria of the potential ecological risk index
NIRI ${E}_{\rm{r}}^{i} $ 风险等级
Risk levelNIRI≤40 ≤40${E}_{\rm{r}}^{i} $ 低风险
Low risk40<NIRI≤80 40< ≤80${E}_{\rm{r}}^{i} $ 中等风险
Medium risk80<NIRI≤160 80< ≤160${E}_{\rm{r}}^{i} $ 较高的风险
Higher risk160<NIRI≤320 160< ≤320${E}_{\rm{r}}^{i} $ 高风险
High riskNIRI>320 >320${E}_{\rm{r}}^{i} $ 极高风险
Extremely high risk表 2 重金属健康风险评价计算参数含义和取值
Table 2. Definitions and values of calculated parameters for health risk assessment of heavy metals
参数
Parameter符号
Notation单位
Unit儿童
Children成人
Adults暴露时间
Exposure timeET h·d−1 24 24 暴露频率
Exposure frequencyEf d·a−1 180 180 暴露年限
Exposure durationED a 6 24 平均寿命
Average lifetimeATn h ED × 365 × 24
(非致癌作用for non-carcinogens)ED × 365 × 24
(非致癌作用for non-carcinogens)70 × 365 × 24
(致癌作用for carcinogens)70 × 365 × 24
(致癌作用for carcinogens)种类
ParameterRfCi/(mg·m−3) IUR/((μg·m−3)−1) Pb 3.52×10−3 0.000012 As 1.50×10−5 0.0043 Cr 1.00×10−4 0.084 Ni 9.00×10−5 0.00026 Cd 1.5×10−5 0.0018 Se 2.00×10−2 — Mo 4.00×10−4 — Zn 3.01×10−1 — Cu 4.02×10−2 — V 1.00×10−4 — “—”表示没有相关数据. “—” indicates no relevant data. 表 4 中国不同山地站点微量元素平均浓度(ng·m−3)
Table 4. Average trace elements concentrations at different mountain sites in China(ng·m−3)
项目
Parameter武当山
Mt.Wudang泰山[12]
Mt.Tai庐山[13]
Mt.Lu贡嘎山[14]
Mt.Gongga高度/m
Altitude862 1534 1165 1600 K 477.84±113.33 145.95 — 498.20 Na 398.47±81.17 340.25 — 211.50 Fe 305.53±104.41 152.07 330.40 224.00 Ca 215.52±82.32 355.48 — 372.80 Al 174.10±125.68 50.65 369.10 295.80 Mg 84.83±43.94 53.31 — 167.80 Zn 27.57±13.07 42.16 274.30 154.60 Pb 15.20±7.76 17.36 65.40 39.40 Mn 7.04±3.25 6.15 24.70 — Cu 4.27±1.31 3.22 13.20 2.20 Ba 3.71±1.85 6.26 66.00 6.00 Cr 2.78±1.13 1.62 18.20 — As 1.72±0.73 1.63 22.30 4.30 Se 1.47±0.69 1.20 7.60 — V 1.40±0.46 0.50 — 0.70 Ni 1.30±0.57 11.17 — 0.90 Mo 0.57±0.27 — — — Cd 0.48±0.19 0.34 2.80 — 注:“—”表示没有相关数据. “—” indicates no relevant data. 表 5 PM2.5中元素PCA-MLR结果
Table 5. Results of PCA-MLR of elements in PM2.5
元素
ElementsF1 F2 F3 Na 0.694 0.110 -0.402 Mg 0.977 0.039 -0.080 Al 0.981 -0.059 -0.030 K 0.73 -0.047 0.418 Ca 0.935 0.120 0.025 Mn 0.803 0.434 0.340 Fe 0.813 0.325 0.135 Ba 0.893 0.183 0.189 V 0.626 0.374 0.332 Mo 0.575 0.494 0.169 Cr 0.136 0.815 0.094 Ni 0.098 0.889 0.029 Cu 0.192 0.778 0.478 Zn 0.182 0.770 0.424 Se 0.035 0.596 0.525 As 0.067 0.425 0.780 Cd 0.107 0.167 0.931 Pb 0.074 0.202 0.914 方差贡献率/%
Variance contribution rate48.43 22.68 8.96 来源
Sources地壳
Crustal sources工业源
Industrial production燃煤和机动车
Coal burning and motor vehicles污染源贡献率/%
Contribution rate of pollution sources19.91 22.52 57.57 注:表中黑体字为影响较大的因子载荷(>0.60). Bold letters in the table for influential factor loading(>0.60). -
[1] WANG W J, CHEN C, LIU D, et al. Health risk assessment of PM2.5 heavy metals in County units of Northern China based on Monte Carlo simulation and APCS-MLR[J]. Science of the Total Environment, 2022, 843: 156777. doi: 10.1016/j.scitotenv.2022.156777 [2] 陈衍婷, 杜文娇, 陈进生, 等. 海西城市群PM2.5中重金属元素的污染特征及健康风险评价[J]. 环境科学, 2017, 38(2): 429-437. CHEN Y T, DU W J, CHEN J S, et al. Pollution characteristics of heavy metals in PM2.5 and their human health risks among the coastal city group along western Taiwan Straits region, China[J]. Environmental Science, 2017, 38(2): 429-437(in Chinese).
[3] KONG L W, TAN Q W, FENG M, et al. Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China[J]. Chemosphere, 2020, 243: 125267. doi: 10.1016/j.chemosphere.2019.125267 [4] FENG J L, YU H, MI K, et al. One year study of PM2.5 in Xinxiang City, North China: Seasonal characteristics, climate impact and source[J]. Ecotoxicology and Environmental Safety, 2018, 154: 75-83. doi: 10.1016/j.ecoenv.2018.01.048 [5] COPAT C, CRISTALDI A, FIORE M, et al. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic review[J]. Environmental Research, 2020, 191: 110129. doi: 10.1016/j.envres.2020.110129 [6] 雷文凯, 李杏茹, 张兰, 等. 保定地区PM2.5中重金属元素的污染特征及健康风险评价[J]. 环境科学, 2021, 42(1): 38-44. LEI W K, LI X R, ZHANG L, et al. Pollution characteristics and health risk assessment of heavy metals in PM2.5 collected in Baoding[J]. Environmental Science, 2021, 42(1): 38-44(in Chinese).
[7] 庞晓晨, 韩新宇, 史建武, 等. 昭通市周边扬尘重金属污染特征及健康风险[J]. 环境科学, 2022, 43(1): 180-188. doi: 10.13227/j.hjkx.202106018 PANG X C, HAN X Y, SHI J W, et al. Pollution characteristics and health risk of heavy metals in fugitive dust around Zhaotong City[J]. Environmental Science, 2022, 43(1): 180-188(in Chinese). doi: 10.13227/j.hjkx.202106018
[8] 徐静, 李杏茹, 张兰, 等. 北京城郊PM2.5中金属元素的污染特征及潜在生态风险评价[J]. 环境科学, 2019, 40(6): 2501-2509. XU J, LI X R, ZHANG L, et al. Concentration and ecological risk assessment of heavy metals in PM2.5 collected in urban and suburban areas of Beijing[J]. Environmental Science, 2019, 40(6): 2501-2509(in Chinese).
[9] 何瑞东, 张轶舜, 陈永阳, 等. 郑州市某生活区大气PM2.5中重金属污染特征及生态、健康风险评估[J]. 环境科学, 2019, 40(11): 4774-4782. HE R D, ZHANG Y S, CHEN Y Y, et al. Heavy metal pollution characteristics and ecological and health risk assessment of atmospheric PM2.5 in a living area of Zhengzhou City[J]. Environmental Science, 2019, 40(11): 4774-4782(in Chinese).
[10] WU Z H, LIU F W, FAN W H. Characteristics of PM10 and PM2.5 at mount Wutai Buddhism scenic spot, Shanxi, China[J]. Atmosphere, 2015, 6(8): 1195-1210. doi: 10.3390/atmos6081195 [11] ZHANG X, ETO Y, AIKAWA M. Risk assessment and management of PM2.5-bound heavy metals in the urban area of Kitakyushu, Japan[J]. Science of the Total Environment, 2021, 795: 148748. doi: 10.1016/j.scitotenv.2021.148748 [12] QIE G H, WANG Y, WU C, et al. Distribution and sources of particulate mercury and other trace elements in PM2.5 and PM10 atop Mount Tai, China[J]. Journal of Environmental Management, 2018, 215: 195-205. [13] LI T, WANG Y, LI W J, et al. Concentrations and solubility of trace elements in fine particles at a mountain site, Southern China: Regional sources and cloud processing[J]. Atmospheric Chemistry and Physics, 2015, 15(15): 8987-9002. doi: 10.5194/acp-15-8987-2015 [14] YANG Y J, WANG Y S, WEN T X, et al. Elemental composition of PM2.5 and PM10 at mount Gongga in China during 2006[J]. Atmospheric Research, 2009, 93(4): 801-810. doi: 10.1016/j.atmosres.2009.03.014 [15] ZHANG N N, CAO J J, LIU S X, et al. Chemical composition and sources of PM2.5 and TSP collected at Qinghai Lake during summertime[J]. Atmospheric Research, 2014, 138: 213-222. doi: 10.1016/j.atmosres.2013.11.016 [16] 苏彬彬, 刘心东, 陶俊. 华东区域高山背景点PM10和PM2.5背景值及污染特征[J]. 环境科学, 2013, 34(2): 455-461. SU B B, LIU X D, TAO J. Characteristics of PM10 and PM2.5 concentrations in mountain background region of East China[J]. Environmental Science, 2013, 34(2): 455-461(in Chinese).
[17] 魏雅, 林长城, 胡清华, 等. 福建九仙山大气PM10及部分化学组成的季节变化[J]. 环境科学, 2017, 38(10): 4077-4083. WEI Y, LIN C C, HU Q H, et al. Seasonal variations in PM10 and associated chemical species in Jiuxian Mountain in Fujian Province[J]. Environmental Science, 2017, 38(10): 4077-4083(in Chinese).
[18] LI Y F, GAO R, XUE L K, et al. Ambient volatile organic compounds at Wudang Mountain in Central China: Characteristics, sources and implications to ozone formation[J]. Atmospheric Research, 2020, 250: 105359. [19] HJ657—2013空气和废气颗粒物中金属元素的测定电感耦合等离子体质谱法[S]. HJ657—2013 Ambient air and stationary source emission - Determination of metals in ambient particulate matter - Inductively coupled plasma/mass spectrometry (ICP-MS) (in Chinese).
[20] 魏复盛, 陈静生, 吴燕玉. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. WEI F S, CHEN J S, WU Y Y. China's soil element background value[M]. Beijing: China Environment Science Press, 1990(in Chinese).
[21] 刘威杰, 石明明, 程铖, 等. 夏季大气PM2.5中元素特征及源解析: 以华中地区平顶山-随州-武汉为例[J]. 环境科学, 2020, 41(1): 23-30. LIU W J, SHI M M, CHENG C, et al. Characteristics and sources of elements in PM2.5 during summer for three typical cities in Pingdingshan-Suizhou-Wuhan, central China[J]. Environmental Science, 2020, 41(1): 23-30(in Chinese).
[22] MEN C, LIU R M, XU L B, et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China[J]. Journal of Hazardous Materials, 2020, 388: 121763. doi: 10.1016/j.jhazmat.2019.121763 [23] DAHMARDEH BEHROOZ R, KASKAOUTIS D G, GRIVAS G, et al. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran[J]. Chemosphere, 2020, 262: 127835. [24] 国家卫生健康委员会. 大气污染人群健康风险评估技术规范: WS/T 666—2019[S]. 北京: 中国标准出版社, 2019. National Health Commission of the People’s Republic of China. Technical specifications for health risk assessment of ambient air pollution: WS/T 666—2019[S]. Beijing: Standards Press of China, 2019(in Chinese).
[25] 李星谕, 毛瑶, 陈展乐, 等. 华中地区冬季灰霾天气下PM2.5中重金属污染特征及健康风险评价: 以湖北黄冈为例[J]. 环境科学, 2021, 42(10): 4593-4601. LI X Y, MAO Y, CHEN Z L, et al. Characteristics and health risk assessment of heavy metals in PM2.5 under winter haze conditions in central China: A case study of Huanggang, Hubei Province[J]. Environmental Science, 2021, 42(10): 4593-4601(in Chinese).
[26] 樊曙先, 樊建凌, 郑有飞, 等. 南京市区与郊区大气PM2.5中元素含量的对比分析[J]. 中国环境科学, 2005, 25(2): 146-150. doi: 10.3321/j.issn:1000-6923.2005.02.005 FAN S X, FAN J L, ZHENG Y F, et al. Compared analysis of element content in atmospheric PM2.5 in Nanjing urban and suburban area[J]. China Environmental Science, 2005, 25(2): 146-150(in Chinese). doi: 10.3321/j.issn:1000-6923.2005.02.005
[27] LAI S C, ZOU S C, CAO J J, et al. Characterizing ionic species in PM2.5 and PM10 in four Pearl River Delta cities, South China[J]. Journal of Environmental Sciences (China), 2007, 19(8): 939-947. doi: 10.1016/S1001-0742(07)60155-7 [28] DENG C, ZHUANG G, HUANG K, et al. Chemical characterization of aerosols at the summit of mountain Tai in central East China[J]. Atmospheric Chemistry and Physics, 2011, 11(14): 7319-7332. doi: 10.5194/acp-11-7319-2011 [29] LI L, WANG W, FENG J L, et al. Composition, source, mass closure of PM2.5 aerosols for four forests in Eastern China[J]. Journal of Environmental Sciences, 2010, 22(3): 405-412. doi: 10.1016/S1001-0742(09)60122-4 [30] NIU Z C, WANG S, CHEN J S, et al. Source contributions to carbonaceous species in PM2.5 and their uncertainty analysis at typical urban, peri-urban and background sites in southeast China[J]. Environmental Pollution, 2013, 181: 107-114. doi: 10.1016/j.envpol.2013.06.006 [31] 樊馨瑶, 卢新卫, 刘慧敏, 等. 西安市高校校园地表灰尘重金属污染来源解析[J]. 环境科学, 2020, 41(8): 3556-3562. doi: 10.13227/j.hjkx.201912041 FAN X Y, LU X W, LIU H M, et al. Pollution and source analysis of heavy metal in surface dust from Xi'an university campuses[J]. Environmental Science, 2020, 41(8): 3556-3562(in Chinese). doi: 10.13227/j.hjkx.201912041
[32] 肖凯, 任学昌, 陈仁华, 等. 典型西北钢铁城市冬季大气颗粒物重金属来源解析及健康风险评价: 以嘉峪关为例[J]. 环境化学, 2022, 41(5): 1649-1660. doi: 10.7524/j.issn.0254-6108.2021010704 XIAO K, REN X C, CHEN R H, et al. Source analysis and health risk assessment of heavy metals in air particulates of typical northwest steel cities in winter: A case study in Jiayuguan[J]. Environmental Chemistry, 2022, 41(5): 1649-1660(in Chinese). doi: 10.7524/j.issn.0254-6108.2021010704
[33] WANG S, CAI L M, WEN H H, et al. Spatial distribution and source apportionment of heavy metals in soil from a typical County-level City of Guangdong Province, China[J]. Science of the Total Environment, 2019, 655: 92-101. doi: 10.1016/j.scitotenv.2018.11.244 [34] 陈江, 费勇, 马鑫雨, 等. 燃煤与垃圾焚烧飞灰中细颗粒物PM2.5的重金属元素风险评价[J]. 中国粉体技术, 2016, 22(2): 104-107. CHEN J, FEI Y, MA X Y, et al. Risk assessment on heavy metal elements of fine particulate matter PM2.5 in fly ash origin from coal and waste incineration[J]. China Powder Science and Technology, 2016, 22(2): 104-107(in Chinese).
[35] 胡月琪, 郭建辉, 张超, 等. 北京市道路扬尘重金属污染特征及潜在生态风险[J]. 环境科学, 2019, 40(9): 3924-3934. doi: 10.13227/j.hjkx.201903094 HU Y Q, GUO J H, ZHANG C, et al. Pollution characteristics and potential ecological risks of heavy metals in road dust in Beijing[J]. Environmental Science, 2019, 40(9): 3924-3934(in Chinese). doi: 10.13227/j.hjkx.201903094
[36] 王珍, 郭军, 陈卓. 贵阳市PM2.5主要污染源源成分谱分析[J]. 安全与环境学报, 2016, 16(2): 346-351. WANG Z, GUO J, CHEN Z. Analysis of the source componential spectrum of PM2.5 emission in Guiyang[J]. Journal of Safety and Environment, 2016, 16(2): 346-351(in Chinese).
[37] YANG Z P, LU W X, LONG Y Q, et al. Assessment of heavy metals contamination in urban topsoil from Changchun City, China[J]. Journal of Geochemical Exploration, 2011, 108(1): 27-38. doi: 10.1016/j.gexplo.2010.09.006 [38] XU L L, YU Y K, YU J S, et al. Spatial distribution and sources identification of elements in PM2.5 among the coastal city group in the Western Taiwan Strait region, China[J]. Science of the Total Environment, 2013, 442: 77-85. doi: 10.1016/j.scitotenv.2012.10.045 [39] CHEN P F, BI X H, ZHANG J Q, et al. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China[J]. Particuology, 2015, 20: 104-109. doi: 10.1016/j.partic.2014.04.020 [40] ZHANG N N, CAO J J, XU H M, et al. Elemental compositions of PM2.5 and TSP in Lijiang, southeastern edge of Tibetan Plateau during pre-monsoon period[J]. Particuology, 2013, 11(1): 63-69. doi: 10.1016/j.partic.2012.08.002 [41] 王申博, 余飞, 燕启社, 等. 典型背景区大气颗粒物中元素粒径分布特征[J]. 环境科学与技术, 2017, 40(6): 133-140. WANG S B, YU F, YAN Q S, et al. Size distributions of elements in atmospheric particulates of the typical background region[J]. Environmental Science and Technology, 2017, 40(6): 133-140(in Chinese).
[42] SONG Y, XIE S D, ZHANG Y H, et al. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX[J]. Science of the Total Environment, 2006, 372(1): 278-286. doi: 10.1016/j.scitotenv.2006.08.041 [43] ZHANG K, CHAI F H, ZHENG Z L, et al. Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area[J]. Journal of Environmental Sciences, 2018, 71: 188-196. doi: 10.1016/j.jes.2018.04.018 [44] 王士宝, 姬亚芹, 李树立, 等. 天津市春季道路降尘PM2.5和PM10中的元素特征[J]. 环境科学, 2018, 39(3): 990-996. WANG S B, JI Y Q, LI S L, et al. Characteristics of elements in PM2.5 and PM10 in road dust fall during spring in Tianjin[J]. Environmental Science, 2018, 39(3): 990-996(in Chinese).
[45] 虎彩娇, 成海容, 李锦伦, 等. 黄石市大气PM10和PM2.5中元素特征及重金属生态风险评价[J]. 环境化学, 2018, 37(1): 138-145. doi: 10.7524/j.issn.0254-6108.2017053106 HU C J, CHENG H R, LI J L, et al. Characteristics of elements and ecological risk assessment of heavy metals in PM10 and PM2.5 in Huangshi[J]. Environmental Chemistry, 2018, 37(1): 138-145(in Chinese). doi: 10.7524/j.issn.0254-6108.2017053106
[46] 周安琪, 刘建伟, 周旭, 等. 北京大气PM2.5载带金属浓度、来源及健康风险的城郊差异[J]. 环境科学, 2021, 42(6): 2595-2603. ZHOU A Q, LIU J W, ZHOU X, et al. Concentrations, sources, and health risks of PM2.5 carrier metals in the Beijing urban area and suburbs[J]. Environmental Science, 2021, 42(6): 2595-2603(in Chinese).
[47] SAH D, VERMA P K, KANDIKONDA M K, et al. Pollution characteristics, human health risk through multiple exposure pathways, and source apportionment of heavy metals in PM10 at Indo-Gangetic site[J]. Urban Climate, 2019, 27: 149-162. doi: 10.1016/j.uclim.2018.11.010 [48] 邢琼予, 戴启立, 毕晓辉, 等. 我国中西部典型城市PM2.5中痕量金属的时空分布特征和健康影响[J]. 中国环境科学, 2019, 39(2): 574-582. doi: 10.3969/j.issn.1000-6923.2019.02.016 XING Q Y, DAI Q L, BI X H, et al. Temporal-spatial variation and health effects of trace metals in PM2.5 in four central-western cities of China[J]. China Environmental Science, 2019, 39(2): 574-582(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.02.016