-
抗生素因其能够治疗疾病,促进牲畜生长和水产养殖而得到普遍使用. 土霉素(OTC)是一种四环素类抗生素,具有广谱抗病原微生物作用,被广泛应用于畜禽养殖. 但生物体只能代谢掉少量的OTC,约75%的OTC被排放到水环境中,从而致使其在水环境中的积累并造成潜在危害[1 − 2]. 例如过量的抗生素残留会增加水系统和土壤中细菌的耐药性,导致抗生素耐药性基因的产生和传播[3]. 因此开发有效的抗生素去除技术具有重要意义.
常见的抗生素去除方法有吸附法[4 − 6]、膜处理法[7 − 8]和生物法[9 − 10]等. 高级氧化技术(AOPs)是通过活化过氧化氢(H2O2)、过硫酸盐(PS)等氧化剂产生活性物种去除难降解有机物的工艺,因其氧化能力强、操作简便而被认为是最有前途的废水净化技术之一. 与其他氧化剂相比,过硫酸盐具有更好的化学稳定性、更低的价格以及方便储存和运输等特点[11]. 通过活化PS产生硫酸根自由基(SO4·−)的高级氧化技术(SR-AOPs)被广泛应用于水中难降解有机化合物的去除[12 − 14]. 相较于活化H2O2产生的·OH,SO4·−是一种高活性物质,具有更高的氧化电位(2.6—3.1 V,·OH为1.9—2.7 V),更长的半衰期(30—40 μs,·OH为20 ns)和更宽的pH值范围(4—9),且对难降解污染物具有更高的去除效率[15 − 17].
PS可通过热量、超声波、紫外线和过渡金属等方式活化[17 − 19]. 其中金属基催化剂具有高活性、能耗小、成本低和易实际应用的优点[20 − 21]. 近年来,金属有机骨架(MOF)作为拥有框架结构和金属位点的金属和非金属结合的材料,在活化PS降解有机物的研究中得到越来越多的关注[22 − 24],其中铁基MOF具有丰富的纳米孔,较大的比表面积,良好的热稳定性和化学稳定性,是一种环境友好型材料[25 − 26]. 在众多铁基MOF中,由对苯二甲酸和三价铁组成的八面体聚合物MIL-88B(Fe)是一种结构优良的铁基MOF材料,被认为是活化PS的潜在催化剂[27]. 由于MOF材料的水稳定性较差,常通过高温煅烧制备MOF衍生物. MOF衍生的多孔碳材料不仅能够保持原有的结构和形貌,而且继承了MOF前驱体的高比表面积和丰富的孔隙结构,还具备更高的活性和稳定性,扩大了适用范围[28]. 因此可通过碳化处理MOF前驱物提高其结构稳定性和催化性能.
该文以制备MOF前驱体的氯化铁和二氨基对苯二甲酸为原料,通过溶剂热和高温裂解制备了Fe/NC. 利用扫描电子显微镜(scanning electron microscope,SEM)、能量色散光谱(Energy dispersive Spectrometer,EDS)、N2吸附/解吸技术(Brunauer-Emmett-Teller,BET)、X射线衍射仪技术(X-ray diffraction,XRD)、拉曼光谱(Raman spectra)和X射线光电子能谱技术(X-ray photoelectron spectroscopy,XPS)对材料的结构和形貌进行表征. 探究了Fe/NC催化剂对PS活化降解OTC的性能. 采用单一变量法探究Fe/NC活化PS体系中催化剂投加量、溶液初始pH和PS浓度对OTC降解的影响. 对Fe/NC/PS体系进行淬灭反应实验,探究OTC降解过程中体系内主要存在的活性物质,进一步推测反应机理;通过无机阴离子和自然有机物对降解的影响及循环实验,探讨Fe/NC活化PS降解抗生素的适用性及稳定性,为Fe/NC在活化SR-AOPs体系降解抗生素领域应用提供科学依据.
MOF衍生物(Fe/NC)活化过硫酸盐对土霉素的高效降解
Efficient degradation of oxytetracycline by persulfate activated by MOF derivative (Fe/NC)
-
摘要: 近年来,以有机金属骨架(MOF)为前驱体制备的MOF衍生物得到越来越多的关注. 与MOF相比,热解制得的MOF衍生物具有多变的结构、更高的比表面积和更好的稳定性. 本研究采用高温碳化MOF成功制备了Fe/NC材料,研究了不同因素对Fe/NC活化PS降解土霉素(OTC)的影响. 在OTC初始浓度为20 mg·L−1、PS浓度为3 mmol·L−1、Fe/NC-900投加量为0.2 g·L−1、初始 pH 值为6.0的条件下,反应20 min后,OTC去除率最高达到89.18%. 活性氧物质淬灭实验证实反应体系中存在硫酸根自由基(SO4·−)、羟基自由基(·OH)等多种活性氧物质,其中SO4·−在OTC的降解中起主要作用. 在最优催化工艺参数下探究不同水基质对OTC去除的影响. 其中Cl−和腐殖酸对OTC的降解几乎没有影响,HCO3−和H2PO4−则表现出轻微的抑制作用,说明Fe/NC的适用范围广. 经过五次循环回用后对OTC的降解率仅下降16.85%,表明材料具有较好的重复利用性. 本研究为MOF材料在水污染控制领域中的应用提供了新的理论研究,并为四环素类抗生素的降解提供了新思路.Abstract: In recent years, organometallic skeleton (MOF) derivatives prepared using MOF as precursors have received increasing attention. Compared with MOF, the MOF derivatives produced by pyrolysis have variable structure, higher specific surface area and better stability. In this research, Fe/NC materials were successfully prepared by high temperature carbonization of MOF. The removal efficiency of OTC could reach 89.18% with 20 mg·L−1 initial concentration of OTC, 3 mmol·L−1 PS and 0.2 g·L−1 Fe/NC-900 at 6.0 pH in 20 min. The results of reactive oxygen species quenching experiments confirmed the presence of various reactive oxygen species, among which SO4·− played a primary role in the degradation of OTC. The effects of different water matrix showed that Cl− and humic acid had almost no effect on OTC degradation, while HCO3− and H2PO4− expressed a slight inhibition. After five cycles of recycling, the degradation rate of OTC only declined by 16.85%. This research suggests a new theoretical basis for the application of MOF materials in the field of water contamination control and provides a novel concept for the degradation of tetracycline antibiotics.
-
Key words:
- persulfate /
- MOF derivative /
- oxytetracycline /
- advanced oxidation /
- heterogeneous catalyst
-
表 1 Fe/NC-900的元素组成与比重
Table 1. Element composition and specific gravity of Fe/NC-900
元素
Element质量百分比/%
Weight percentage原子百分比/%
Atomic percentageC 35.31 56.89 O 14.43 17.45 N 7.97 11.01 Fe 42.29 14.65 *结果来自EDS mapping. 表 2 Fe/NC在不同温度热解产物BET数据
Table 2. BET data of Fe/NC pyrolysis products at different temperatures
催化剂
Catalyzer比表面积/(m2·g−1)
Specific surface area孔体积/(cm2·g−1)
Pore volume孔径尺寸/nm
Aperture sizeFe/NC-700 195.33 0.27 5.60 Fe/NC-800 256.36 0.18 2.91 Fe/NC-900 429.54 0.41 3.80 -
[1] ZHENG L S, LIN X Q, LIU Y F, et al. Synergistically enhanced oxygen reduction reaction and oxytetracycline mineralization by FeCoO/GO modified cathode in microbial fuel cell[J]. Science of the Total Environment, 2022, 808: 151873. doi: 10.1016/j.scitotenv.2021.151873 [2] ZHANG S, ZHAO S R, HUANG S J, et al. Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-/ sulfur-codoped mesoporous carbon[J]. Chemical Engineering Journal, 2021, 420: 130516. doi: 10.1016/j.cej.2021.130516 [3] HE Q L, XIE Z Y, FU Z D, et al. Interaction and removal of oxytetracycline with aerobic granular sludge[J]. Bioresource Technology, 2021, 320: 124358. doi: 10.1016/j.biortech.2020.124358 [4] CHEN J H, YU X L, LI C, et al. Removal of tetracycline via the synergistic effect of biochar adsorption and enhanced activation of persulfate[J]. Chemical Engineering Journal, 2020, 382: 122916. doi: 10.1016/j.cej.2019.122916 [5] LI H Q, HU J T, YAO L F, et al. Ultrahigh adsorbability towards different antibiotic residues on fore-modified self-functionalized biochar: Competitive adsorption and mechanism studies[J]. Journal of Hazardous Materials, 2020, 390: 122127. doi: 10.1016/j.jhazmat.2020.122127 [6] 丛鑫, 王宇, 李瑶, 等. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 2022, 31(2): 326-334. CONG X, WANG Y, LI Y, et al. Adsorption characteristics of biochars and graphene oxide/biochar composites for antibiotics from aqueous solution[J]. Ecology and Environmental Sciences, 2022, 31(2): 326-334 (in Chinese).
[7] QIU G L, CHEN H, SRINIVASA RAGHAVAN D S, et al. Removal behaviors of antibiotics in a hybrid microfiltration-forward osmotic membrane bioreactor for real municipal wastewater treatment[J]. Chemical Engineering Journal, 2021, 417: 129146. doi: 10.1016/j.cej.2021.129146 [8] YIN F B, LIN S Y, ZHOU X Q, et al. Fate of antibiotics during membrane separation followed by physical-chemical treatment processes[J]. Science of the Total Environment, 2021, 759: 143520. doi: 10.1016/j.scitotenv.2020.143520 [9] A D, CHEN C X, ZOU M Y, et al. Removal efficiency, kinetic, and behavior of antibiotics from sewage treatment plant effluent in a hybrid constructed wetland and a layered biological filter[J]. Journal of Environmental Management, 2021, 288: 112435. doi: 10.1016/j.jenvman.2021.112435 [10] 崔迪, 邓红娜, 庞长泷, 等. 生物法去除水环境中磺胺甲恶唑的研究进展[J]. 中国给水排水, 2019, 35(24): 32-38. CUI D, DENG H N, PANG C L, et al. Progress in the study of the removal of sulfamethoxazole by biological methods in water environment[J]. China Water & Wastewater, 2019, 35(24): 32-38 (in Chinese).
[11] TANG L, LIU Y N, WANG J J, et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism[J]. Applied Catalysis B: Environmental, 2018, 231: 1-10. doi: 10.1016/j.apcatb.2018.02.059 [12] 齐亚兵. 活化过硫酸盐高级氧化法降解抗生素的研究进展[J]. 化工进展, 2022, 41(12): 6627-6643. QI Y B. Research progress on degradation of antibiotics by activated persulfate oxidation[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6627-6643 (in Chinese).
[13] CHEN N, LEE D, KANG H, et al. Catalytic persulfate activation for oxidation of organic pollutants: A critical review on mechanisms and controversies[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107654. doi: 10.1016/j.jece.2022.107654 [14] OYEKUNLE D T, GENDY E A, IFTHIKAR J, et al. Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: A review[J]. Chemical Engineering Journal, 2022, 437: 135277. doi: 10.1016/j.cej.2022.135277 [15] LEE J, von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. [16] YANG J L, ZHU M S, DIONYSIOU D D. What is the role of light in persulfate-based advanced oxidation for water treatment?[J]. Water Research, 2021, 189: 116627. doi: 10.1016/j.watres.2020.116627 [17] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [18] 李小娟, 廖凤珍, 叶兰妹, 等. 金属有机骨架及其衍生材料活化过硫酸盐在水处理中的应用进展[J]. 化工进展, 2019, 38(10): 4712-4721. LI X J, LIAO F Z, YE L M, et al. Progress in the applications of metal-organic frameworks and derivatives activate persulfate in water treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4712-4721 (in Chinese).
[19] 刘路明, 高志敏, 邓兆雄, 等. 过硫酸盐的活化及其在氧化降解水中抗生素的机理和应用[J]. 环境化学, 2022, 41(5): 1702-1717. doi: 10.7524/j.issn.0254-6108.2021010601 LIU L M, GAO Z M, DENG Z X, et al. Activation of persulfate and its mechanism and application in oxidative degradation of antibiotics in water[J]. Environmental Chemistry, 2022, 41(5): 1702-1717 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021010601
[20] CHEN F, WU X L, YANG L, et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst[J]. Chemical Engineering Journal, 2020, 394: 124904. doi: 10.1016/j.cej.2020.124904 [21] ZHENG X X, NIU X J, ZHANG D Q, et al. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review[J]. Chemical Engineering Journal, 2022, 429: 132323. doi: 10.1016/j.cej.2021.132323 [22] WANG Z B, REN D J, HUANG Y W, et al. Degradation mechanism and pathway of 2, 4-dichlorophenol via heterogeneous activation of persulfate by using[email protected]nanocatalyst[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130011. doi: 10.1016/j.colsurfa.2022.130011 [23] ZHANG Y F, WEI J, XING L Y, et al. Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation[J]. Separation and Purification Technology, 2022, 282: 120124. doi: 10.1016/j.seppur.2021.120124 [24] 何宗文. 钴掺杂铁基骨架材料MIL-101(Fe)@Co活化过硫酸盐降解左氧氟沙星[J]. 邢台职业技术学院学报, 2022, 39((3): ): 101-104. HE Z W. Oxidation of levofloxacin by activated persulfate based on Co-doped iron-based framework material of MIL-101(Fe)@Co[J]. Journal of Xingtai Polytechnic College, 2022, 39((3): ): 101-104 (in Chinese).
[25] WANG J S, YI X H, XU X T, et al. Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: Batch and continuous experiments[J]. Chemical Engineering Journal, 2022, 431: 133213. doi: 10.1016/j.cej.2021.133213 [26] WANG D K, WANG M T, LI Z H. Fe-based metal–organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol[J]. ACS Catalysis, 2015, 5(11): 6852-6857. doi: 10.1021/acscatal.5b01949 [27] LI X H, GUO W L, LIU Z H, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369: 130-136. doi: 10.1016/j.apsusc.2016.02.037 [28] 雷娟. Co-MOF为前驱体制备的钴基金属氧化物及其甲苯催化氧化性能研究[D]. 太原: 太原理工大学, 2021: 15-18. LEI J. Study on the catalytic oxidation of Co-based metal oxides derived from Co-MOF for toluene[D]. Taiyuan: Taiyuan University of Technology, 2021: 15-18. (in Chinese)
[29] WANG X, YUN Y J, SUN W, et al. A high-performance fluorescence immunoassay based on pyrophosphate-induced MOFs NH2-MIL-88B(Fe) hydrolysis for chloramphenicol detection[J]. Sensors and Actuators B: Chemical, 2022, 353: 131143. doi: 10.1016/j.snb.2021.131143 [30] CHAIKITTISILP W, HU M, WANG H J, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications, 2012, 48(58): 7259-7261. doi: 10.1039/c2cc33433j [31] SU Q, LI J, YUAN H Y, et al. Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B(Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway and toxicity evolution[J]. Chemical Engineering Journal, 2022, 427: 131594. doi: 10.1016/j.cej.2021.131594 [32] YANG C, ZHU Y M, CHEN J Q, et al. Graphene/[email protected]carbon hybrid derived from spent MOF adsorbent as efficient persulfate activator for degradation of tetracycline hydrochloride[J]. Chemical Engineering Journal, 2022, 431: 133443. doi: 10.1016/j.cej.2021.133443 [33] YANG L J, LI H, YU Y, et al. Assembled 3D MOF on 2D nanosheets for self-boosting catalytic synthesis of N-doped carbon nanotube encapsulated metallic Co electrocatalysts for overall water splitting[J]. Applied Catalysis B: Environmental, 2020, 271: 118939. doi: 10.1016/j.apcatb.2020.118939 [34] PENG X M, WU J Q, ZHAO Z L, et al. High efficiency degradation of tetracycline by peroxymonosulfate activated with Fe/NC catalysts: Performance, intermediates, stability and mechanism[J]. Environmental Research, 2022, 205: 112538. doi: 10.1016/j.envres.2021.112538 [35] FENG Y, LIAO C Z, KONG L J, et al. Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process[J]. Journal of Hazardous Materials, 2018, 354: 63-71. doi: 10.1016/j.jhazmat.2018.04.056 [36] SHEN B, LIU Y G, LIU S B, et al. Catalytic degradation of sulfamethoxazole by persulfate activated with magnetic graphitized biochar: Multiple mechanisms and variables effects[J]. Process Safety and Environmental Protection, 2020, 144: 143-157. doi: 10.1016/j.psep.2020.06.041 [37] WANG L, WANG J Y, HE C, et al. Development of rare earth element doped magnetic biochars with enhanced phosphate adsorption performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561: 236-243. doi: 10.1016/j.colsurfa.2018.10.082 [38] XU H D, ZHANG Y C, LI J J, et al. Heterogeneous activation of peroxymonosulfate by a biochar-supported Co3O4 composite for efficient degradation of chloramphenicols[J]. Environmental Pollution, 2020, 257: 113610. doi: 10.1016/j.envpol.2019.113610 [39] LUO J Y, YI Y Q, YING G G, et al. Activation of persulfate for highly efficient degradation of metronidazole using Fe(II)-rich potassium doped magnetic biochar[J]. The Science of the Total Environment, 2022, 819: 152089. doi: 10.1016/j.scitotenv.2021.152089