-
我国是最大的塑料生产国和消费国,2020年我国塑料制品生产量已经超过7.6×107 t[1],预计到2030年塑料的年消耗量将达到7×108 t,而每年塑料废弃量大概在2.6×108~3×108 t[2]。我国废塑料的回收方式主要有国内生产和国外进口,废塑料进口量居世界首位,但2014-2017年废塑料进口量逐渐降低。由于2017年《禁止洋垃圾入境推进固体废物进口管理制度改革实施方案》[3]的发布,要求全面禁止“洋垃圾”入境,使国内废塑料进口量大幅减少,2018年全国进口废塑料仅7.6×104 t,到2019年降至为0[4]。
废塑料完全禁止进口后,某些企业为了实现利益最大化,往往会将含有大量重金属污染物的废塑料直接加工成塑料颗粒,并以再生塑料颗粒原料的形式重新进口至国内。这些塑料颗粒含有一些铬、镉、铅、汞等重金属元素,具有明显的毒性[5],因而研究再生塑料颗粒重金属溶出特性变得尤为重要。塑料中的重金属主要来自添加剂、颜料等,这些重金属主要是Pb、Cd、Sb等。塑料制品中也可能会残留一些油墨、染料,这些残留物会悬浮在塑料颗粒基质中,在一定条件下,它会迁移到与之接触的食物中,会对人体产生慢性损伤[6~10]。周静等[11]用ICP-MS检测方法检测了塑料吸管中10种重金属的迁移量,发现铅、铝、镍等均超过国家《生活饮用水卫生标准》 (GB5749-2006) [12]规定的0.01、0.2、0.02 mg·L−1,频繁使用会危害人体健康。许建林等[13]从16个入境废塑料样品经检测发现锑、铅、铬元素超标,存在重金属污染的风险。高向阳等[14]检测塑料吸管浸泡液与消解液中重金属的含量,发现各塑料吸管均检出微量重金属。姚春毅等[15]采用ICP-MS测定方法研究了PET在水、10 %乙醇溶液、3 %乙酸溶液以及精炼橄榄油4种食品模拟物中锑的迁移量,得出锑的溶出量没有超过标准规定的0. 05 mg·L−1的限值。WESTERHOFF等[16]研究了美国西南部市场9种瓶装水,发现PET塑料瓶中会溶出重金属Sb,高温会加快Sb的溶出。
目前,在全面禁止进口废物政策实施后,尚缺乏基于进口再生塑料颗粒中重金属溶出特性的相关研究。本研究从不同温度、不同接触时间和不同模拟液等条件出发,在实验室对具有代表性的进口 PP、PE、PS、PET和ABS进行模拟有毒有害物质溶出实验,比较其重金属的溶出特性,以探寻进口再生塑料颗粒中重金属在温度、接触时间和模拟液中的溶出规律,以为建立塑料接触材料及制品中重金属溶出量的标准方法提供依据。
-
本研究所采用的代表性进口再生塑料颗粒均来自于成都某检测机构,采用简单随机的5点采样法,在储存室分别采集PP、PE 、PS、PET 和ABS各500 g,装入样品袋并做标记带回实验室。以采集的5种再生塑料颗粒为研究对象,各取100 g样品 (精确到0.1 g) 清洗5 min,待烘干后,密封备用。
-
该实验仪器主要由高效液相色谱仪 (Thermo Scientific™ DFS™,美国赛默飞世尔科技) 、恒温恒湿箱 (BE-TH-150,东莞贝尔有限公司) 、电感耦合等离子体发射光谱仪 (Agilent7500a,美国Agilent科技有限公司) 及恒温水浴锅 (SHJ-4AB(6AB),金坛市精达仪器制造有限公司) 组成;在实验过程中用到了甲醇、正己烷、二氯甲烷、乙腈及乙醇试剂。
-
根据国家标准《食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则》 (GB 5009.156-2016) [17]和《食品安全国家标准 食品接触材料及制品迁移试验通则》 (GB 31604.1-2015) [18],通过试验测量,本实验的5种塑料颗粒直径约2~2.5 mm,高2.5~3 mm,按标准中规定S/V为6 dm2的要求,计算得6 mL的食物模拟物中需要加10个再生塑料颗粒。用ICP-MS检测仪 (Agilent Technology Co,1500 A,Ltd,USA) 测定五种再生塑料颗粒模拟液中重金属含量最高的6种重金属元素的质量分数,分别为Cr、Pb、Mn、Cu、Cd、Hg,取3次实验的平均值,所有平行双样的分析误差均小于20%,加标回收率为85~115%,符合《水质 32种元素的测定 电感耦合等离子体发射光谱法》 (HJ776-2015) [19]质量控制标准。
(1) 温度对进口再生塑料颗粒中重金属释放的影响。选用PP、PE、PS、PET和ABS为研究对象,根据《食品安全国家标准 孕妇及乳母营养补充食品》 (GB 31601.1-2015) [20]中规定的试验条件,自变量温度选择25、40、70 ℃,分别代表室温、常见的加热温度、模拟加热温度,选择接触时间为240 h,模拟液为pH较低的50%的乙酸溶液。
(2) 接触时间对进口再生塑料颗粒中重金属释放的影响。选用PP、PE、PS、PET和ABS为研究对象,接触时间选为10 d,并在24、48、96、120、144、168、240 h 7个时间点取样,选择25 ℃室温为代表温度,模拟液为pH较低的50%的乙酸溶液。
(3) 模拟液对进口再生塑料颗粒中重金属释放的影响。选用PP、PE、PS、PET和ABS为研究对象,自变量选择3%乙酸、50%乙酸、10%乙醇、95%乙醇作为食品模拟溶液,分别代表2种酸性食品、1种酒精类食品、1种脂肪类食品,选择25 ℃室温为代表温度,接触时间为240 h。
-
图1是以50 %的乙酸作为模拟溶液,接触时间为240 h,在25、40、70 ℃的温度下进行的对比实验。5种再生塑料颗粒中的重金属铬、铅、锰、镉、汞和铜的溶出量均随着温度的升高而增加,这是由于随着实验温度的升高,模拟液对塑料的溶胀作用增强,塑料的溶胀程度增大,分子间的间距变大,使得材料中的重金属更为容易扩散到模拟溶液中[21-22]。在PP再生塑料颗粒中铬、铜、汞3种重金属元素的溶出量增幅最大,在温度为25~40 ℃时增长平缓,70 ℃大幅度增加,其中铬的溶出量最大,在25~40 ℃时从295.27 μg·L−1增长到433.20 μg·L−1,温度为70 ℃时PP中的铬溶出量达到最大值为1 050.12 μg·L−1,PP中的铅、锰、镉溶出量增幅较为平缓;在PE塑料颗粒中铅、锰、铜3种重金属元素的溶量相较于铬、镉、汞的增幅较为明显,其中铜元素的增幅最大,在温度从25 ℃升到70 ℃时,溶出量从199.86 μg·L−1增长到1 244.04 μg·L−1,增加了6.22倍;PS、PET塑料颗粒中各重金属的溶出量在不同温度下增幅较小,PET中的铬为5种再生塑料颗粒中含量最高的,温度从25 ℃升到70 ℃时,溶出量从1 559.36 μg·L−1增长到1 963.69 μg·L−1;ABS中的铬、铅、锰、镉、汞等5种重金属元素在25~40 ℃溶出速率较低,其中的铬在25~40 ℃的溶出量仅从1 024.64 μg·L−1增长到1 089.62 μg·L−1,温度升高这5种重金属溶出浓度效果明显。对于5种塑料中6种重金属元素在不同温度下取得的实验结果可知,重金属从样品材料内部向模拟溶液的溶出依赖于材料大分子之间的空隙逐步向模拟溶液的另一个空隙迁移。因此,在这个迁移过程中,除了需要重金属原子或离子配合和充足的能量外,要实现重金属的迁移还必须在附近出现一个足够大的空隙来容纳迁移过来的重金属[23-24]。随着温度的升高,材料的大分子链运动加剧,重金属附近出现空隙的概率增加,因此重金属更容易迁移到模拟溶液中[25]。
-
图2是5种再生塑料颗粒在25 ℃,50 %乙酸模拟液中随着时间增长6种重金属的溶出情况。从图中可以看出PP再生塑料颗粒中除Cr外各重金属的溶出曲线较为平滑,随着时间的增长,样品中的5种重金属Pb、Mn、Cu、Cd、Hg溶出量总体上呈稳步上升的趋势,在前100 h内溶出量增长较快,100 h后溶出量增长变缓,绝大数重金属最终的溶出量趋于稳定,重金属Cr在前168 h内溶出量快速增长,168 h后溶出量增长缓慢。再生塑料颗粒PE中重金属Cr、Pb和Cu在前168 h内溶出速度较快,168 h后溶出速度变缓,其他3种重金属的溶出曲线在前100 h呈稳步上升的趋势,后140 h无明显变化。在PS、PET再生塑料颗粒中的重金属在25 ℃、50 %乙酸模拟液中各重金属随时间的溶出量均有增加,时间对重金属的溶出量变化显著。在研究的6种目标重金属中,PET中的Cr溶出量要明显高于其他重金属。在ABS再生塑料颗粒中,由图可知重金属Cr、Mn在前96 h溶出量增加缓慢,96~168 h内溶出量快速增加,168 h后无明显增加。其他4种重金属的溶出量在前100 h内呈稳步上升的趋势,后140h逐渐趋于稳定。由5种进口再生塑料颗粒的溶出曲线可以看出6种重金属中的铬的初始浓度较大,溶出量与其他5种重金属相比较多,这与彭湘莲等[26]的研究结论一致,样品中本底含量是影响重金属溶出量的重要因素[15]。
-
由图3可知,不同种类的再生塑料颗粒中的重金属在不同的模拟液中均有一定的溶出,且在相同温度 (25 ℃) 和接触时间 (240 h) 条件下,4种模拟溶液中的重金属的溶出量大小整体呈现出:50%乙酸>3%乙酸>10%乙醇>95%乙醇。即重金属在酸性条件下更易溶出[27-28],这可能是由于模拟液对再生塑料颗粒的溶胀作用和酸溶解作用导致[29]。其中PP、PE在3%乙酸溶液中重金属Pb、Cd、Cr的溶出量与张琳研究的结果大致相同[30]。由图3可以看出,再生塑料颗粒PP和PS在4种模拟液中重金属的溶出量相较于其他3种再生塑料颗粒的较低,对人体危害相对较小。在25 ℃时,重金属Cu在10 %乙醇中的溶出量大于3 %乙酸的溶出量,其中PP再生塑料颗粒中的重金属Cu在3 %乙酸中的溶出量达到60.04 μg·L−1,而Cu在10 %乙醇中的溶出量达到86.97 μg·L−1。此外,在温度为25 ℃时,部分重金属Cu、Cd、Cr在3 %乙酸的溶出量高于50 %乙酸中这3种重金属元素的溶出量,其中再生塑料颗粒PE中的重金属Cr在3 %乙酸中溶出量为1 190.87 μg·L−1,比50 %乙酸中Cr的溶出量多82.49 μg·L−1,再生塑料颗粒PE中重金属Cu在3%乙酸中溶出量为257.87 μg·L−1,比50 %乙酸中Cu的溶出量多57.71 μg·L−1,这可能是由于所有重金属元素的最大溶出量对应着一个pH阈值[31],即在达到 pH 阈值前,模拟液中重金属的溶出量随着 pH 的降低而升高直到达到阈值,而当溶出量达到最大值时,pH 继续降低,重金属溶出量却随之降低。
-
1) 温度是影响5种再生塑料颗粒的重要因素,温度越高6种重金属溶出量越大。其中Cr的溶出量最大。
2) 接触时间是5种再生塑料颗粒中重金属溶出的因素之一,随着溶出时间增长,5种再生塑料颗粒样品中5种重金属Pb、Mn、Cu、Cd、Hg溶出量总体上呈稳步上升的趋势,在前100 h内溶出量增长较快,100 h后溶出量增长变缓。
3) 5种再生塑料颗粒中重金属溶出与模拟液种类有关,在相同温度和接触时间下,4种模拟溶液中重金属溶出量由大到小大致为:50 %乙酸、3 %乙酸、10 %乙醇、95 %乙醇。
典型进口再生塑料颗粒中重金属溶出特性及其影响因素
Dissolution characteristics of heavy metals in typical imported recycled plastic granules
-
摘要: 为了解我国进口再生塑料颗粒中重金属溶出特性,以某检测机构的5种再生塑料颗粒PP、PE、PS、PET和ABS为研究对象,研究不同温度、不同接触时间和不同模拟液等条件下,再生塑料颗粒中重金属溶出特性。结果表明,在25、40、70 ℃这3种温度下,PP、PE、PET和ABS再生塑料颗粒中重金属铬、铅、锰、镉、汞和铜的溶出量随着温度的升高而增加,PS中重金属浓度随温度升高变化不大;随着接触时间的增长,样品中的6种重金属Cr、Pb、Mn、Cu、Cd、Hg溶出量增长趋势由快至慢,5种再生塑料颗粒中重金属Cr的溶出浓度最高;PE、PS、PET和ABS再生塑料颗粒在4种模拟液中重金属溶出量大小整体呈现出:50%乙酸>3%乙酸>10%乙醇>95%乙醇,但PP再生塑料颗粒中重金属Cu在3%乙酸中的溶出量比10%乙醇中的多。本研究结果可为建立塑料接触材料及制品中重金属溶出量的标准方法提供依据。Abstract: In order to understand the dissolution characteristics of heavy metals in imported recycled plastic granules in my country, five recycled plastic granules PP, PE, PS, PET and ABS from a testing institution in Chengdu were used as the research objects. Dissolution characteristics of heavy metals in recycled plastic particles under conditions such as liquid. The results showed that the dissolved amounts of heavy metals chromium, lead, manganese, cadmium, mercury and copper in the five recycled plastic particles increased with the increase of temperature at three temperatures of 25, 40 and 70 °C. The concentration of heavy metals didn’t change much with the increase of temperature; with the increase of contact time, the dissolution amount of six heavy metals Cr, Pb, Mn, Cu, Cd and Hg in the sample first increased rapidly and then increased slowly, and The dissolution concentration of the heavy metal Cr of in the five recycled particles is the highest; the dissolution of the five types of recycled plastic particles in the four simulated solutions showed the overall size: 50 % acetic acid > 3 % acetic acid > 10 % ethanol > 95 % ethanol, but the dissolved amount of heavy metal Cu of PP recycled plastic particles in 3 % acetic acid was more than that in 10 % ethanol. The results of this study can provide a basis for establishing the standard method and national standard of heavy metals in plastic contact materials and products in our country.
-
Key words:
- imported recycled plastic particles /
- dissolution test /
- temperature /
- contact time /
- simulated solution
-
市政污泥是城市污水处理过程中不可避免的副产物,其含水率高、有机质含量高、成分复杂,并且含有大量的寄生虫卵、病原微生物和一定量的重金属[1]。近年来,市政污泥的产量也在不断增加,预计2025年我国污泥年产量将突破9×107 t,污泥处理处置已成为一项亟待解决的难题[2]。污泥的主要处置方式包括卫生填埋、农业利用、干化焚烧、建筑材料利用等,我国较大部分污泥采用填埋方式,约占我国污泥总处置量的65%[3]。
由于我国早期污水处理厂存在着“重水轻泥”的现象,导致已填埋污泥的含水率过高,力学性质较差。而填埋场的库容有限,随着污泥产量的逐年增加,目前国内许多城市的填埋场,例如上海老港、成都长安、深圳下坪、杭州天子岭的填埋场的库容已经严重不足[4-5],为此,许多填埋场要求将填埋污泥的含水率从80%降低至60%以下,这样可以增加至少50%的填埋库容[6]。但是,由于污泥有机质含量高、结合水含量高、亲水性强,单一的机械处理很难将污泥含水率降低至60%以下,需结合一定的预处理方法将污泥的胞外聚合物(EPS)破解,释放出自由水后再进行脱水减量处理[7]。当前填埋污泥的深度脱水通常采用“化学调理+板框压滤”的方法[8],该方法需将污泥从填埋库中挖出,运输到指定场地后再进行处理,存在着成本高、易对环境造成二次污染的问题,因此,需寻找一种高效、环保的污泥原位处理方法。
真空预压法具有施工工艺简单、成本低等优点,是软土地基原位处理的一种有效方法[9-11]。近年来,将化学预调理与真空预压相结合的工艺已逐渐被应用于填埋污泥原位处理[3,8,12-16],该工艺在一定程度上能够实现污泥的原位减量,但是仍存在易产生臭气污染、难以保证药剂调理均匀等问题。为了寻找更加环保高效的填埋污泥原位处理方法,有研究者提出了冻融联合真空预压填埋污泥原位处理技术[17-18]。冻融的原理是污泥被冷冻时,冷冻过程中不断生长的冰晶会破坏污泥细胞膜的完整性,使细胞脱水、收缩或溶解,使胞外聚合物释放到上清液中[19];同时,冻融后污泥中小颗粒团聚成大颗粒,能显著提高污泥的脱水性能,而且冻融循环可显著提高污泥的渗透系数[20-21]。
有研究表明,采用冻融联合真空预压法处理填埋污泥时,在出水量、出水速率、沉降量、减量比、含水率均优于药剂预调理方法[18],但其在实验过程中并没有使用实际真空预压过程中的塑料排水板;塑料排水板作为真空预压的负压传递通道和排水通道,其性能对真空固结效率和效果有着显著影响[22]。根据芯板与滤膜的复合方式不同,目前工程界常采用分离式和整体式2种塑料排水板,在普通土体真空预压中,已有这2种排水板类型的对比研究[10, 23-24]。但是,污泥作为一种胶体状生物固体,其工程性质显著不同于软土和吹填土,但目前鲜有考察不同排水板类型对填埋污泥真空固结效果的研究。
本研究开展了不同排水板类型填埋污泥冻融-真空对比研究。首先,对填埋污泥进行冻融预处理;随后进行室内真空预压模型实验,分别设置分离式排水板(SPVD)与整体式排水板(IPVD)对照组;最后,通过对比出水量、减量比、含水率等数据,探究该法处理填埋污泥的宏观效果,并且通过压汞、电镜扫描等微观实验,探究冻融后污泥在真空预压过程中微观结构变化特性。
1. 实验方案
1.1 实验污泥
供试污泥取自上海市某污泥填埋库区,污泥填埋龄期约为12 a,占用了大量土地和地下空间,亟需对填埋库中的污泥进行原位脱水减量处理。填埋污泥的基本物理性质如表1所示。可以看出,填埋污泥含水率高,有机质含量比新鲜污泥(60%左右)有所降低。这是因为,填埋污泥受填埋龄期及厌氧消化影响,发生了一定程度的降解。填埋污泥的液塑限较大,按照细粒土的分类应为高液限有机质粉土。
表 1 污泥基本物理指标Table 1. Basic physical indexes of sludge比重 含水率/% 密度/(g·cm−3) 有机质/% 液限/% 塑限/% 1.8 86 1.13 40 184 111 采用Mastersize2000激光粒度仪对原状填埋污泥及冻融后污泥进行了粒度分布测试,粒径分布曲线如图1所示。原状污泥d90为169.5 μm、d50为47.28 μm,而冻融后污泥d90为241.6 μm、d50为65.68 μm,经冻融后,污泥颗粒粒径显著增大。这主要是因为:在冻结过程中,污泥中的小颗粒被不断生长的冰晶推挤压密,污泥小颗粒团聚为大颗粒,显著提高了其脱水沉降能力。
1.2 真空预压模型实验
真空预压实验装置由真空泵、抽滤瓶、排水板和模型箱组成,具体如图2所示。模型箱由有机玻璃桶及密封盖组成,玻璃桶高500 mm、外径320 mm、内径300 mm,密封盖为20 mm厚的有机玻璃盖板。分别采用如图3所示的分离式排水板和整体式排水板,排水板通过土工布与排水管绑扎。分离式排水板属于分体式十字型塑料排水板,排水板滤膜包裹在塑料芯板的外侧,与芯板不黏接,滤膜被制作成略大于芯板尺寸的土工织布常套包裹于芯板四周,滤膜等效孔径为75 μm;整体式排水板芯板与滤膜通过热合紧贴在一起,两者间不可作相对移动,滤膜等效孔径为120 μm。
采用冰柜对污泥进行冻融处理,冻结温度设置为−15 ℃,待达到冻结温度后将污泥取出于室温(22 ℃)融化。每个模型箱污泥用量为约16 kg。整个实验期间真空度保持在85 kPa左右,实验过程中对累计出水量、累计沉降量以及真空度进行监测记录,实验完成后对模型箱内污泥取样测定含水率及取样进行压汞、电镜扫描微观测试。
2. 实验结果及分析
2.1 累积出水量
由累计出水量变化曲线(图4)可以看出,分离式排水板和整体式排水板两者最终出水量差别不大。整体式排水板的最终出水量为8 830 mL,而分离式排水板的最终出水量为8640 mL,二者仅相差190 mL。在实验初期,分离式排水板与整体式排水板的出水速率都很高,在前4 h的出水量可达总出水量的70%以上。这可能是因为污泥经冻融后,污泥细胞内外不断生长的冰晶使得污泥细胞破裂,导致污泥细胞膜的完整性被破坏,EPS被破解,从而释放细胞内外的物质,导致污泥絮体结构被破坏,释放出大量的结合水和间隙水,进而大幅提高了污泥的脱水性能[19]。冻融后污泥中含有大量的自由水,这导致前期出水速率及出水量都很高。
在前4 h,分离式排水板的累计出水量达7 050 mL,占总出水量的81.5%,而后出水速率突然变缓,后139 h的出水量仅为1 590 mL;而整体式排水板在前4 h累计出水量为6 410 mL,后139 h的出水量为2 420 mL。造成后期出水量差异的可能原因为,分离式排水板的等效滤膜孔径为75 μm,而整体式排水板的滤膜孔径为120 μm,在真空排水固结前期,渗流通道尚未形成,污泥颗粒在真空负压及孔隙水压力的作用下不断向排水板附近运移,由于分离式排水板等效滤膜孔径过小,部分细小颗粒未能穿过滤膜,从而影响排水板附近的渗流通道的通畅性,造成一定的淤堵。这也与已有研究[10, 25]的结果一致。但由于冻融后污泥颗粒粒径增大,小颗粒含量少,只造成部分淤堵,大部分排水通道仍保持通畅,所以二者最终出水量差异不大。
2.2 累计沉降量与减量比
由累计沉降量变化曲线(图5)可以看出,冻融污泥原始高度为20.5 cm,分离式排水板的最终高度为7.8 cm,整体式排水板的最终高度为8.55 cm,二者均下降50%以上。污泥在冻融时,污泥颗粒被不断生长的冰晶推挤压密,污泥小颗粒得以团聚为大颗粒,并显著提高了大中孔隙的分布,在真空预压固结时显著提高了其渗透固结性,从而提高了污泥的固结度。与分离式排水板相比,整体式排水板的高度变化却相对较小。这可能是因为:本次实验高度测量仅取实验模型箱两侧高度变化平均值记录,而取样后发现,整体式排水板处理后污泥在侧壁附近发生了1 cm左右的径向收缩,若考虑径向收缩的变化来计算实验后污泥体积,则分离式排水板污泥的最终体积为5 510 cm3,而整体式排水板最终体积为5 262 cm3,相比分离式排水板体积变化更大,这也与累计出水量变化规律相互印证。而整体式排水板最终出现了径向收缩现象,径向收缩是因为在真空排水固结过程中,在排水板远端的土颗粒在水力梯度的作用下不断向排水板中心处运移[26]。这也说明采用整体式排水板后冻融污泥整体的排水固结效果较好,整体渗流通道顺畅,真空负压影响范围可覆盖到远端土体,污泥整体固结度较好。
经计算,两种不同类型排水板的最终减量比均在60%以上,整体式排水板的减量比为63.6%,分离式排水板的减量比为61.9%。这表明整体式排水板减量比略优于分离式排水板,冻融联合真空预压法可有效实现填埋污泥的原位减量。
2.3 含水率
实验结束后,从排水板中心处开始,沿径向在0、15、30 cm处取污泥上、中、下3个位置,每个位置取3个样对照,测定不同位置处的含水率,结果如图6所示。
1) 原始污泥含水率为86%,经冻融联合真空预压处理后,其含水率大幅度下降,含水率最低可降至59.5%。
2) 沿半径方向污泥整体含水率分布呈现出逐渐增加的变化规律。径向上的差异主要是由于:离开排水板中心的距离和水力梯度的差异,排水板附近水力梯度大,水更容易渗流排出,而距离排水板较远处水力梯度小,水不易排出,所以靠近排水板中心处含水率更低。
3) 沿深度方向呈现出上部含水率低、底部含水率高的分布规律。这是因为:真空负压强度沿着排水板衰减,排水板周围土体水力梯度逐渐减小,对排水板的影响范围逐渐减小,影响范围沿着排水板呈现出倒锥形逐渐减小的趋势[24],这导致上部由于真空负压强度高,水力梯度大,水容易排出,而底部由于真空强度衰减,水力梯度减小,故形成底部含水率高、上部含水率低的分布规律。
4) 整体式排水板上部含水率在60%左右分布,中部在65%左右分布,底部在70%左右分布;而分离式排水板的上、中、下部均在65%~70%左右分布。可见,整体式排水板的整体处理效果更好,且靠近上、中部含水率明显优于分离式排水板。这可能是因为:一方面,分离式排水板滤膜孔径较小,易造成小颗粒淤堵,从而影响排水固结效果;另一方面,由于分离式排水板芯板是内包于滤膜的,在土体压力下不可避免地出现滤膜“陷入”排水通道的情况,从而减少排水面积,而整体式排水板滤膜是胶结于芯板竖齿上的,滤膜始终是“紧绷”状态,在土体压力下变形较小[27],从而造成含水率分布的差异。
2.4 压汞实验
实验结束后,分别在整体式排水板、分离式排水板模型箱中心位置处取样进行压汞(MIP)实验,分析不同冻结条件下冻融污泥径向真空排水的固结孔径的大小分布规律,结果如图7、图8所示。
整体式排水板与分离式排水板孔径分布有明显差异:分离式排水板主要以小孔分布为主,即以团粒内孔隙分布为主;而整体式排水板主要以微孔和介孔分布为主,即以颗粒间孔隙为主。其原因是,在真空预压过程中,真空度不断向污泥深度处传递,并以排水板为中心的径向上形成真空负压梯度,在该真空负压梯度的作用下形成真空渗流场[28]。排板周围土体首先开始渗流出水,孔隙水在负压的作用下不断向排水板方向渗流,而此时污泥中的细小颗粒也在渗流力的作用下不断向排水板中心运移,使得排水板附近土体渗透系数不断降低,使排水板中心处的土体首先发生径向固结,土体发生压缩。
污泥经冻融后,污泥大中孔隙数量分布大幅度提高,小、微孔隙数量减少;而在真空排水固结时,较大孔隙先被压缩成较小孔隙,较小孔隙后被压缩[29]。整体式排水板由于不易淤堵,在真空排水固结时渗流通道顺畅,固结程度高,大、中孔隙先不断被压缩为小孔隙,而后小孔隙被压缩为更小的介孔;而分离式排水板由于发生了部分淤堵,从而导致排水板中心处污泥固结程度对比整体式排水板低,主要以大、中孔隙压缩为小孔为主。这也与含水率分布规律互相印证,即整体式排水板由于固结程度高,在贴近排水板处污泥含水率低于分离式排水板。
2.5 电镜扫描
实验完成后,对不同排水板径向真空排水固结后靠近排水管中心处的污泥取微观样进行电镜扫描实验(SEM),观察其微观结构特性,如图9所示。可以看出,整体式排水板与分离式排水板真空排水固结后污泥整体结构致密均匀,呈现出有规律的网状结构。但整体式排水板对比分离式排水板结构更加致密,固结程度高,以颗粒间孔隙分布为主;而分离式排水板固结程度低,孔径相对更大,以团粒内孔隙为主。这也与MIP实验结果相印证。
3. 结论
1)分离式排水板和整体式排水板两者的最终出水量差别不大。两种不同类型排水板的最终减量比均在60%以上,整体式排水板的减量比为63.6%,分离式排水板的减量比为61.9%,整体式排水板减量比略优于分离式排水板。
2)原始污泥含水率为86%,经冻融联合真空预压处理后,其含水率大幅度下降,含水率最低可降至59.5%,符合我国填埋污泥的规范要求;其中,整体式排水板的整体处理效果更好。沿半径方向,污泥整体含水率分布呈现出逐渐增加的变化规律;沿深度方向,呈现出上部含水率低,底部含水率高的分布规律。
3)整体式排水板与分离式排水板孔径分布具有明显差异。分离式排水板主要以小孔分布为主,即以团粒内孔隙分布为主;而整体式排水板主要以微孔和介孔分布为主,即以颗粒间孔隙为主。整体式排水板对比分离式排水板结构更加致密,固结程度高,以颗粒间孔隙分布为主;而分离式排水板固结程度低,孔径相对更大,以团粒内孔隙为主。
-
-
[1] 孙小东, 曹鼎, 胡倩倩, 等. 废弃塑料的化学回收资源化利用研究进展[J]. 中国塑料, 2021, 35(8): 44-54. [2] 再协. 废塑料行业发展空间巨大[J]. 中国资源综合利用, 2016, 34(4): 13. doi: 10.3969/j.issn.1008-9500.2016.04.009 [3] 中华人民共和国国务院办公厅. 禁止洋垃圾入境推进固体废物进口管理制度改革实施方案[EB/OL]. [2017-07-27]. http://www.gov.cn/zhengce/content/2017-07/27/content_5213738.htm. [4] 方胜杰. 中国塑料再生行业发展现状及未来展望[J]. 中国石油和化工经济分析, 2019(4): 30-34. [5] 赵付文, 孙卓军, 高国庆, 等. 食品接触塑料材料中有害重金属迁移量测定方法综述[J]. 化学分析计量, 2015, 24(1): 101-105. doi: 10.3969/j.issn.1008-6145.2015.01.029 [6] GIRI S, MAHATO M K, BHATTACHARJEE S, et al. Development of a new noncarcinogenic heavy metal pollution index for quality ranking of vegetable, rice, and milk[J]. Ecological Indicators, 2020, 113(1): 106214. [7] NUAPIA Y, CHIMUKA L, CUKROWSKA E. Assessment of heavy metals in raw food samples from open markets in two African cities[J]. Chemosphere, 2017: 339-346. [8] 王仑, 孙卓军, 宋晓云, 等. 食品接触塑料中重金属在食品模拟液中迁移[J]. 合成树脂及塑料, 2015, 32(6): 74-81. doi: 10.3969/j.issn.1002-1396.2015.06.022 [9] ARVANITOYANNIS I S, BOSNEA L. Migration of substances from food packaging materials to foods[J]. Critical Reviews in Food Science and Nutrition, 2004, 44(2): 63-76. doi: 10.1080/10408690490424621 [10] LIU X M, SONG Q J, TANG Y, et al. Human health risk assessment of heavy metals in soil-vegetable system: a multimedium analysis[J]. Science of the Total Environment, 2013, 463/464(5): 530-540. [11] 周静, 钱亮亮, 冯洪燕, 等. 电感耦合等离子体质谱法检测塑料饮用吸管中金属元素的迁移量[J]. 食品科学, 2018, 39(8): 276-281. doi: 10.7506/spkx1002-6630-201808043 [12] 中华人民共和国卫生部 生活饮用水卫生标准: GB5749-2006[S] 北京: 中国标准出版社, 2007. [13] 许建林, 阮建, 孙大为. 入境废塑料17 种重金属元素含量检测分析[J]. 浙江万里学院学报, 2011, 24(3): 76-79. doi: 10.3969/j.issn.1671-2250.2011.03.018 [14] 高向阳, 王长青, 高遒竹, 等. 塑料饮用吸管中重金属及其迁移率的测定[J]. 河南农业大学学报, 2014, 48(6): 774-779. [15] 姚春毅, 艾连峰, 郭春海, 等. 采用ICP-MS研究聚酯类食品包装材料中锑向食品模拟物的迁移规律[J]. 中国食品卫生杂志, 2013, 25(1): 12-15. [16] WESTERHOFF P, PRAPAIPONG P, SHOCK E, et al. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water[J]. Water Research, 2008, 42(3): 551-556. doi: 10.1016/j.watres.2007.07.048 [17] 中华人民共和国国家卫生和计划生育委员会 食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则 GB 5009.156-2016[S]. 北京: 中国标准出版社, 2017. [18] 中华人民共和国国家卫生和计划生育委员会 食品安全国家标准 食品接触材料及制品迁移试验通则GB 31604.1-2015[S]. 北京: 中国标准出版社, 2016. [19] 中华人民共和国环境保护部. 水质32种元素的测定 电感耦合等离子体发射光谱法: GB HJ 776-2015[S]. 北京: 中国环境科学出版社, 2016. [20] 中华人民共和国国家卫生和计划生育委员会 食品安全国家标准 孕妇及乳母营养补充食品: GB 31601.1-2015[S]. 北京: 中国标准出版社, 2016. [21] 李茜茜, 吴常良. 光伏背板用PET薄膜湿热老化性能研究[J]. 太阳能, 2014(8): 50-52. doi: 10.3969/j.issn.1003-0417.2014.08.015 [22] 杜斌, 杨睿, 谢续明. 聚对苯二甲酸乙二醇酯水热老化过程中的物理和化学变化[J]. 塑料, 2011, 40(5): 24-27. [23] 雷呜, 于中振, 欧玉春, 等. 无机填料对PET结晶行为、力学性能和流变性能的影响[J]. 高分子材料科学与工程, 2001(2): 105-108. doi: 10.3321/j.issn:1000-7555.2001.02.027 [24] 杜斌, 杨睿, 谢续明. 热塑性聚酯的物理老化和化学降解及其相互作用[C]. 2012年全国高分子材料科学与工程研讨会, 2012: 233-234. [25] PIRZADEH E, ZADHOUSH A, HAGHIGHATt M. Hydrolytic and thermal degradation of PET fibers and PET granule: The effects of crystallization, temperature, and humidity[J]. Journal of Applied Polymer Science, 2007, 106(3): 1544-1549. doi: 10.1002/app.26788 [26] 彭湘莲. 食品纸塑复合包装材料中重金属的检测及迁移规律研究[D]. 中南林业科技大学, 2015. [27] 李波. 聚乙烯塑料食品包装材料中有毒有害物质的测定及迁移研究[D]. 太原: 山西大学, 2011. [28] 徐争启, 倪师军, 滕彦国, 等. 矿业活动固体废弃物中重金属元素释放机理的浸出实验[J]. 地质通报, 2012, 31(1): 101-107. doi: 10.3969/j.issn.1671-2552.2012.01.012 [29] 卢任杰, 刘燕娜. 聚酯类食品包装材料中二氧化钛在食品模拟物中的迁移规律[J]. 化学分析计量, 2013, 23(1): 35-38. [30] 张琳. 基于ICP-MS法测定食品包装材料中重金属迁移量[J]. 化学工程师, 2023, 37(4): 29-31. doi: 10.16247/j.cnki.23-1171/tq.20230429 [31] 何绪文, 李静文, 张珊珊, 等. 环境条件对采矿废石中重金属溶出特性的影响[J]. 生态环境学报, 2013, 22(3): 523-527. doi: 10.16258/j.cnki.1674-5906.2013.03.029 -