-
我国城市化进程飞速发展和产业结构改革促使传统化工企业改型,导致城市内及周边存在大量遗留的工业污染场地[1]。多环芳烃 (Polycyclic Aromatic Hydrocarbons, PAHs) 是焦化场地的特征污染物,具有强致癌性、致突变性和致畸性[2],严重威胁生态环境和人体健康。PAHs污染土壤的物理修复技术中,电阻加热技术 (electrical resistance heating, ERH) 因修复效率高、对场地异质结构适应性高而被广泛应用[3]。ERH处理温度最高约为100~120 ℃[3-4],该温度下能耗高,土壤微生物生长和活性受限[3, 5],不利于土壤后续利用。因此,需要降低ERH加热温度,减小对土壤功能性的损害。
据统计,1988-2021年全球土壤热修复项目中,有57.2%的项目采用ERH技术[6],其中低温ERH应用广泛。35~50 ℃的低温ERH用于与原位生物修复、零价铁 (ZⅥ) 还原等技术联合修复氯化溶剂污染源区,研究结果显示升温提高降解反应速率、增大污染物溶解度并促进挥发作用,将温度从5 ℃提高至60 ℃,重质非水相有机污染物的质量转移率提高了4~5倍,联合修复能够提升修复效率、提高修复效果、降低成本[7]。常规加热温度由20 ℃升至80 ℃过程中,土壤细菌总量和污染物溶解度大幅增加,土壤优势菌群发生改变,污染物的生物利用度和降解率提高,60 ℃下总PAHs去除率比20 ℃下提高了21.01%,75 ℃下萘的溶解度比20 ℃下增加约10倍[8-11];恒定电场强度、较长时间尺度下 (≥180 min) 土壤热处理影响微生物群落,使其多样性、均匀度降低,并改变优势种,但恒定电场强度下加热温度波动大,无法研究恒定加热温度对微生物的影响[5, 12-13]。
对于低温ERH在恒定温度下处理PAHs污染土壤过程中对土壤肥力和细菌群落结构的影响研究较缺乏。本研究以PAHs原位污染土壤为研究对象,拟采用实验室自制电阻加热装置研究低温ERH (80 ℃) 处理180 min下污染土壤PAHs的去除率和对土壤理化性质、土壤细菌数量、群落结构和PAHs降解菌丰度的影响,研究结果可为多环芳烃污染土壤的电阻加热修复提供理论指导。
低温电阻加热对土壤多环芳烃去除和细菌群落的影响
Effects of low-temperature electrical resistance heating on soil polycyclic aromatic hydrocarbons removal and microorganisms
-
摘要: 针对电阻加热技术修复多环芳烃污染土壤存在能耗高、降低土壤功能性的问题,采用低温条件 (80 ℃) 的电阻加热以降低能耗、减少对土壤肥力和细菌群落的影响。利用自主研制的电阻加热装置,探究低温加热对土壤多环芳烃的去除效果、对土壤理化性质和细菌群落的影响。结果表明,在80 ℃加热180 min条件下,电阻加热对土壤多环芳烃的去除率为21.8%,苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽、䓛、二苯并[a,h]蒽、茚并[1,2,3-cd]芘和萘的质量分数均低于《土壤环境质量建设用地污染风险管控标准 (试行) 》 (GB 36600-2018) 第一类用地筛选值;电阻加热处理后细菌丰度增幅达108%,提高了群落丰富度和多样性,富集了多环芳烃降解菌和功能基因,将厚壁菌门PAHs降解菌的相对丰度放大了近10倍,提高了编码4,5-二羟基邻苯二甲酸酯脱羧酶 (K04102) 和1,4-二羟基-2-萘甲酰-CoA硫酯酶 (K12073) 的功能基因预测丰度,且不会对土壤肥力水平造成负面影响。本研究结果可为低温电阻加热在多环芳烃污染土壤修复中的应用提供参考。
-
关键词:
- 有机污染土壤 /
- 多环芳烃 /
- 低温电阻加热 /
- 细菌群落构成 /
- 多环芳烃降解功能基因
Abstract: To address the problems of high energy consumption and reduced soil functionality in the remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil by electrical resistance heating (ERH), low-temperature (80 ℃) ERH was used to reduce energy consumption and impact on soil fertility and bacterial communities. The effect of low-temperature ERH on soil PAHs removal, soil physicochemical properties and bacterial community was investigated by using a self-made device. The results demonstrated that ERH treatment removed 21.8% of PAHs from soil, the contents of Benzo[a]anthracene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Chrysene, Dibenz[a,h]anthracene, Indeno[1,2,3-cd]pyrene and Naphthalene were all lower than the screening values for the first category of sites in the Soil Environmental Quality Construction Land Contamination Risk Control Standards (Trial) (GB36600-2018) after ERH treatment. ERH treatment increased bacterial abundance by 108%, improved community richness and diversity, and enriched PAHs-degrading bacteria and functional genes. ERH amplified the relative abundance of PAHs-degrading bacteria in Firmicutes phylum by nearly 10-fold and increased the predicted abundance of functional genes encoding 4,5-dihydroxyphthalate decarboxylase (K04102) and 1,4-dihydroxy-2-naphthoyl-CoA thioesterase (K12073) without negatively affecting soil fertility. The results can provide a reference for the remediation of PAHs-contaminated soil by low-temperature ERH treatment. -
图 1 电阻加热小试装置[12]
Figure 1. Schematic of the lab-scale ERH equipment
表 1 低温电阻加热加热处理前后土壤理化性质
Table 1. Basic physical and chemical characteristics of soil before and after ERH treatment
样品处理方式 pH 总碳/% 总氮/% 有机碳/% 全磷/% 全钾/% 电阻加热处理前 8.36±0.07 1.74±0.05 0.07±0.00 0.86±0.03 0.06±0.00 0.80±0.04 电阻加热处理后 8.11±0.09 1.80±0.15 0.08±0.00 1.00±0.04 0.06±0.00 0.86±0.04 注:不同处理间的显著性分析采用单因素ANOVA方差分析,表中指标各处理间均无显著性差异 (P > 0.05)。 表 2 低温电阻加热处理前后土壤细菌丰度和α多样性
Table 2. Diversity quantity of soil microorganisms after low-temperature ERH treatment
样品处理方式 细菌丰度/ (copies·g−1) α多样性指数 Chao1 Simpson Shannon Observed species 电阻加热处理前 0.12×108 5 333±1 300 1.00±0.00 10.5±1.0 4 967±1 210 电阻加热处理后 0.25×108 6 051±310 0.99±0.01 10.6±0.6 5 601±300 注:不同处理间的显著性分析采用单因素ANOVA方差分析,表中指标各处理间均无显著性差异 (P > 0.05)。 -
[1] 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145-152. doi: 10.16418/j.issn.1000-3045.2018.02.003 [2] SAZYKIN I S, MINKINA T M, KHMELEVTSOVA L E, et al. Polycyclic aromatic hydrocarbons, antibiotic resistance genes, toxicity in the exposed to anthropogenic pressure soils of the Southern Russia[J]. Environmental Research, 2021, 194: 1-10. [3] 焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J]. 环境工程学报, 2019, 13(9): 2027-2036. doi: 10.12030/j.cjee.201905138 [4] 康绍果, 李书鹏, 范云. 污染地块原位加热处理技术研究现状与发展趋势[J]. 化工进展, 2017, 36(7): 2621-31. doi: 10.16085/j.issn.1000-6613.2016-2144 [5] HAN Z Y, JIAO W T, TIAN Y, et al. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: Removal efficiency and alteration of soil properties[J]. Chemosphere, 2020, 239: 1-8. [6] HORST J, MUNHOLLAND J, HEGELE P, et al. In situ thermal remediation for source areas: technology advances and a review of the market from 1988-2020[J]. Ground Water Monitoring and Remediation, 2021, 41(1): 17-31. doi: 10.1111/gwmr.12424 [7] MACBETH T W, TRUEX M J, POWELL T, et al. Combining low-energy Electrical Resistance Heating with biotic and abiotic reactions for treatment of chlorinated solvent DNAPL source areas[C]//U. S. Department of Defense. Applied Research Associates Inc. Albuquerque, 2012: 1-61. [8] 吴宜霖, 刘志号, 孙仲平, 等. 温度对土壤中多环芳烃缺氧微生物降解的影响[J]. 环境科学与技术, 2022, 45(5): 77-83. doi: 10.19672/j.cnki.1003-6504.2595.21.338 [9] FEITKENHAUER H, MARKL H. Biodegradation of aliphatic and aromatic hydrocarbons at high temperatures[J]. Water Science and Technology, 2003, 47(10): 123-130. doi: 10.2166/wst.2003.0555 [10] NAKASAKI K, SASAKI M, SHODA M, et al. Change in microbial numbers during thermophilic composting of sewage-sludge with reference to CO2 evolution rate[J]. Applied and Environmental Microbiology, 1985, 49(1): 37-41. doi: 10.1128/aem.49.1.37-41.1985 [11] VAN DER VOORT M, KEMPENAAR M, VAN DRIEL M, et al. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression[J]. Ecology Letters, 2016, 19(4): 375-382. doi: 10.1111/ele.12567 [12] 杨顺美, 焦文涛, 刘峰, 等. 电阻加热修复佳乐麝香污染土壤的工艺优化[J]. 环境工程学报, 2022, 16(4): 1284-1293. doi: 10.12030/j.cjee.202201004 [13] 田垚. 电阻加热耦合化学氧化对场地多环芳烃污染土壤的修复效果研究[D]. 太原: 山西大学, 2020. [14] 王瑞琨. 用电位法测定土壤pH值[J]. 山西化工, 2018, 38(3): 64-65. doi: 10.16525/j.cnki.cn14-1109/tq.2018.03.22 [15] 王亚婷. 元素分析仪同时测定土壤中的全氮和总碳[J]. 城市地质, 2022, 17(2): 249-254. doi: 10.3969/j.issn.1007-1903.2022.02.016 [16] 天津市环境监测中心, 辽宁省环境监测实验中心, 沈阳市环境监测中心站, 等. 土壤有机碳的测定重铬酸钾氧化-分光光度法: HJ 615-2011[S]. 北京: 中国环境科学出版社, 2011. [17] 韩海林, 蔡玮. 土壤全磷测试方法存在的问题及改进[J]. 浙江农业科学, 2017, 58(5): 877-878. doi: 10.16178/j.issn.0528-9017.20170548 [18] 王敏. 碱熔-火焰光度法测定土壤全钾应注意的问题[J]. 辽宁林业科技, 2016(6): 75-76. doi: 10.3969/j.issn.1001-1714.2016.06.026 [19] 王海棠, 于佩. 加速溶剂萃取-串联质谱法测定土壤中8种有机氯农药和16种多环芳烃[J]. 环境科技, 2017, 30(1): 63-66. doi: 10.3969/j.issn.1674-4829.2017.01.015 [20] WALKER N J. Real-time and quantitative PCR: Applications to mechanism-based toxicology[J]. Journal of Biochemical and Molecular Toxicology, 2001, 15(3): 121-127. doi: 10.1002/jbt.8 [21] BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(9): 1091. [22] CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581-583. doi: 10.1038/nmeth.3869 [23] KATOH K, MISAWA K, KUMA K, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Research, 2002, 30(14): 3059-3066. doi: 10.1093/nar/gkf436 [24] ZHANG Y L, HAN Z G, WU H, et al. Rapid construction of maximum likelihood tree of HIV-1 pol gene by FastTree2.1. 8[J]. Chinese Journal of Aids & STD, 2017, 23(8): 695-699. [25] 中华人民共和国生态环境部, 中华人民共和国国家市场监督管理总局. 土壤环境质量标准-建设用地土壤污染风险管控标准: GB 36600-2018[S]. 北京: 中国环境出版集团, 2018. [26] 夏天翔, 姜林, 魏萌, 等. 焦化厂土壤中PAHs的热脱附行为及其对土壤性质的影响[J]. 化工学报, 2014, 65(4): 1470-1480. doi: 10.3969/j.issn.0438-1157.2014.04.043 [27] FALCIGLIA P P, DE GUIDI G, CATALFO A, et al. Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation[J]. Chemical Engineering Journal, 2016, 296: 162-172. doi: 10.1016/j.cej.2016.03.099 [28] ZHANG X X, WANG X M, LI C, et al. Ligninolytic enzyme involved in removal of high molecular weight polycyclic aromatic hydrocarbons by Fusarium strain ZH-H2[J]. Environmental Science and Pollution Research, 2020, 27(34): 42969-42978. doi: 10.1007/s11356-020-10192-6 [29] 胡艳军, 余帆, 陈江, 等. 污泥热解过程中多环芳烃排放规律[J]. 化工学报, 2018, 69(8): 3662-3669. [30] YI Y M, PARK S, MUNSTER C, et al. Changes in ecological properties of petroleum oil-contaminated soil after low-temperature thermal desorption treatment[J]. Water, Air and Soil Pollution, 2016, 227(4): 108. doi: 10.1007/s11270-016-2804-4 [31] 杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047-1056. [32] 朱寒阳, 傅海平, 张国林, 等. 不同施肥措施对茶园土壤酶活性及土壤肥力的影响[J]. 江苏农业科学, 2018, 46(23): 371-374. doi: 10.15889/j.issn.1002-1302.2018.23.091 [33] BARCENAS-MORENO G, ROUSK J, BAATH E. Fungal and bacterial recolonisation of acid and alkaline forest soils following artificial heat treatments[J]. Soil Biology and Biochemistry, 2011, 43(5): 1023-1033. doi: 10.1016/j.soilbio.2011.01.019 [34] 成浩. 交流电场与Fusarium sp. A-2真菌耦合对博落回修复铀污染土壤的强化作用[D]. 衡阳: 南华大学, 2021. [35] 汪殿蓓, 暨淑仪, 陈飞鹏. 植物群落物种多样性研究综述[J]. 生态学杂志, 2001(4): 55-60. doi: 10.3321/j.issn:1000-4890.2001.04.015 [36] DONG F, YAN Q Y, LI X, et al. Study on bacterial community structure in greenhouse vegetable soils affected by soil temperature and fertilization pattern using T-RFLP technology[J]. Soils, 2019, 51(3): 495-501. [37] WIPF H M L, THAO-NGUYEN B, COLEMAN-DERR D. Distinguishing between the impacts of heat and drought stress on the root microbiome of sorghum bicolor[J]. Phytobiomes Journal, 2021, 5(2): 166-176. doi: 10.1094/PBIOMES-07-20-0052-R [38] SUN Z P, WANG L, YANG S C, et al. Thermally enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a highly contaminated aged soil[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107236. doi: 10.1016/j.jece.2022.107236 [39] 任久生. 增温对大兴安岭多年冻土区泥炭地土壤微生物的影响研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2018. [40] UBANI O, ATAGANA H I, SELVARAJAN R, et al. Unravelling the genetic and functional diversity of dominant bacterial communities involved in manure co-composting bioremediation of complex crude oil waste sludge[J]. Heliyon, 2022, 8(2): 1-15. [41] LV L H, SUN L A, YUAN C L, et al. The combined enhancement of RL, nZVI and AQDS on the microbial anaerobic-aerobic degradation of PAHs in soil[J]. Chemosphere, 2022, 307(1): 135609. [42] MANDREE P, MASIKA W, NAICKER J, et al. Bioremediation of polycyclic aromatic hydrocarbons from industry contaminated soil using indigenous Bacillus spp[J]. Processes, 2021, 9(9): 1606. doi: 10.3390/pr9091606 [43] ZHAO Y Y, DUAN FA, CUI Z J, et al. Insights into the vertical distribution of the microbiota in steel plant soils with potentially toxic elements and PAHs contamination after 60 years operation: Abundance, structure, co-occurrence network and functionality[J]. Science of the Total Environment, 2021, 786: 147338. doi: 10.1016/j.scitotenv.2021.147338 [44] 王乔, 郑瑞, 孙学婷, 等. 睾丸酮丛毛单胞菌对羊草根际土壤PAHs降解及细菌群落结构的影响[J]. 生物工程学报, 2020, 36(12): 2657-2673. doi: 10.13345/j.cjb.200381 [45] LIN W J, GUO C L, ZHANG H, et al. Electrokinetic-enhanced remediation of phenanthrene-contaminated soil combined with Sphingomonas sp GY2B and biosurfactant[J]. Applied Biochemistry and Biotechnology, 2016, 178(7): 1325-1338. doi: 10.1007/s12010-015-1949-8 [46] 李凤梅, 郭书海, 张灿灿, 等. 多环芳烃降解菌的筛选及其在焦化场地污染土壤修复中的应用[J]. 环境污染与防治, 2016, 38(4): 1-5. doi: 10.15985/j.cnki.1001-3865.2016.04.001 [47] 尹丽娟. 芽孢杆菌(bacillus)Y2菌株与菲(phenanthrene)的相互作用研究 [D]. 昆明: 云南大学, 2016. [48] 宋宇, 王健, 苏振成, 等. PAHs污染土壤的物理强化修复过程中土壤细菌的响应[J]. 生态学杂志, 2016, 35(6): 1547-1552. doi: 10.13292/j.1000-4890.201606.024 [49] XU H, TONG N, HUANG S B, et al. Degradation of 2, 4, 6-trichlorophenol and determination of bacterial community structure by micro-electrical stimulation with or without external organic carbon source[J]. Bioresource Technology, 2018, 263: 266-272. doi: 10.1016/j.biortech.2018.05.015 [50] 付登强, 滕应, 骆永明, 等. 土壤pH、水分及温度对长期污染土壤中苯并(a)芘动态变化的影响初探[J]. 土壤, 2012, 44(3): 444-449. doi: 10.3969/j.issn.0253-9829.2012.03.014 [51] TAO W Y, LIN J Z, WANG W D, et al. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109994. doi: 10.1016/j.ecoenv.2019.109994 [52] 吴洁婷, 许琪, 张营, 等. 微生物降解典型高分子量多环芳烃的研究进展[J]. 环境科学研究, 2021, 34(8): 1981-1990. doi: 10.13198/j.issn.1001-6929.2021.05.14 [53] YU C, YAO J, CAI M M, et al. Polycyclic aromatic hydrocarbons degrading microflora in a tropical oil-production well[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(5): 632-636. doi: 10.1007/s00128-014-1371-x [54] DEREKOVA A, MANDEVA R, KAMBOUROVA M. Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs[J]. World Journal of Microbiology and Biotechnology, 2008, 24(9): 1697-1702. doi: 10.1007/s11274-008-9663-0