-
随着全球经济的快速发展,城市固体废物的排放也带来了越来越大的环境压力。据统计,我国2020年城市固体废物排放量为2.35×108 t[1]。焚烧是全球应用最广泛的固废处理方法之一,通过焚烧不仅能大幅降低固废的体积和质量[2],而且焚烧所产生的热能还可用于发电,其在中国城市生活垃圾处理中的占比已从2004年的5.55%急剧上升至2020年的62.13%。尽管焚烧在垃圾处理方面表现良好,但其会产生次级废物——垃圾焚烧飞灰。飞灰的成分复杂,且在不同时间、地点所产生的飞灰的成分差距较大[3],主要包括重金属盐、硫化物、硝酸盐、活性炭和二恶英[4]等。此外,在焚烧过程中通常需要添加熟石灰来吸附焚烧过程中的酸性气体和痕量有机物,这使飞灰具有较高的碱度[5]。飞灰中含有剧毒的二恶英和易浸出的重金属,因此为危险废物[6],必须加以谨慎处置。2021年12月10日,生态环境部等多部门联合印发了《“十四五”时期“无废城市”建设工作方案》[7],提出要强化固体废物综合利用水平和无害化处置能力,推进“无废城市”建设。研究飞灰的无害化处理和资源化利用变得尤为重要。
目前,飞灰的处理工艺和方法主要包括固化稳定化[8]、热处理[9]和分离浸出[10]。洗涤是飞灰处理常用的预处理方法,水洗可去除飞灰中高浓度的可溶性盐。HU等[11]的研究表明,在液固比为2.5~3时,用清水洗涤几乎能去除飞灰中所有的可溶性盐类,但水洗后重金属的浸出率有所升高;YANG等[12]在液固比为10时用去离子水洗涤,使飞灰中氯化物的比例由16.6%降为1.2%。LI等[13]的研究发现,洗涤能使飞灰的孔径和比表面积增大,并提高其吸附能力。水洗后,超过90%的Pb和Zn依然留存在水洗灰中,且赋存形态基本不变[14]。酸洗可溶解飞灰中的氢氧化物和碳酸化合物,从而破坏飞灰的固体结构[15]。ZHAO等[16]通过硝酸酸洗能去除飞灰中87.97%的Cd;林涛等[17]采用盐酸能洗出飞灰中95%以上的Zn、Pb、Cd和81.38%的Cu;HUANG等[18]采用水洗和酸洗联用技术,能去除飞灰中86%的Pb、98%的Zn、96%的Cd和62%的Cu;孙福成等[19]将飞灰与酸性废水联合处理,使飞灰中Pb和Cd的浸出浓度降低了90%以上。这些研究结果表明,酸洗能使飞灰中的大部分可溶性盐和重金属从固相转移至液相,便于后续的回收处理。
采用电沉积技术处理含重金属的洗涤废液,是通过废液中金属离子的电迁移,使其在阴极发生电化学还原反应而析出金属的过程,具有回收处理成本低、二次污染小的特点。彭腾等[20]采用柠檬酸浸出-电沉积联用技术处理废锂电池,使废电池中94.84%的钴得以回收;李子良等[21]应用电沉积技术处理酸性含汞废液,其中98%的汞能得到回收。陈熙等[22]认为,在电沉积过程中,阳极的氧化反应会产生氧气,溶液中氧气浓度的升高会腐蚀阴极表面沉积的重金属单质,造成重金属单质的返溶现象,从而影响重金属的处理效率。近年来,电沉积技术越来越多地被用于催化剂制备和高浓度金属废水处理,但涉及用于飞灰中重金属回收利用的研究却很少。
本研究采用酸洗-电沉积联用技术,用以去除并回收飞灰中的Zn、Pb、Cu和Cd 4种重金属。以硝酸作为酸洗试剂,确定合适的洗涤工艺,并分析飞灰酸洗前后的微观形貌、晶相、重金属存在形态等的变化。通过电沉积技术以回收酸洗废液中的Zn、Pb、Cu和Cd,进而评估酸洗-电沉积技术应用于飞灰中重金属回收的可行性,以期为飞灰无害化处理和资源回收提供参考。
-
垃圾焚烧飞灰样品由位于中国天津的一家垃圾焚烧厂提供。飞灰通过200目网筛筛分,经过烘箱105 ℃烘干,使用前保持在60 ℃。所有试剂均为分析纯。
用扫描电子显微镜 (SEM,S-4800,株式会社 日立制作所) 表征飞灰样品的表面形貌,通过X射线衍射仪 (XRD,D8-FOCUS,德国布鲁克AXS有限公司) 测量飞灰样品的晶相,并采用专业软件 (MDI Jade 6.5) 对衍射花样进行分析。飞灰中重金属离子在酸洗前后的存在形态采用BCR (European Community Bureau of Reference) 顺序提取程序[23]进行分析。通过X射线荧光光谱仪 (XRF,S4 Pioneer,日本株式会社理学公司) 测定飞灰样品的元素组成,通过电感耦合等离子体发射光谱 (ICP-OES,Thermo iCAP 7400,美国Thermo Fisher Scientific公司) 测定样品中Zn、Pb、Cu和Cd元素的质量浓度。采用王水消解法处理并测定飞灰中主要重金属的质量分数,采用醋酸缓冲溶液法 (HJ/T 300-2007) [24]评估飞灰的浸出毒性。
-
称取5.0 g干燥飞灰放入100 mL杯中,按设定的液固比和浓度加入配置好的硝酸溶液,酸洗过程中持续搅拌。待洗涤终止后,采用孔径为0.45 μm的滤膜进行过滤,收集澄清滤液备用。采用电感耦合等离子体发射光谱 (ICP-OES,Thermo iCAP 7400,美国Thermo Fisher Scientific公司) 测定浸出液中Zn、Pb、Cu和Cd元素的质量浓度,以重金属的浸出去除率 (浸出液中重金属的总质量与原始飞灰试样中重金属的总质量的比值) 表示酸洗浸出效果。探究硝酸浓度、液固比、洗涤时间对酸洗浸出效果的影响,实验条件的设计如下。
1) 浓度影响的实验条件为:在液固比为10和洗涤时间为60 min时,取硝酸浓度为0.5、1.0、1.5、2.0、2.5、3.0 mol·L−1。
2) 液固比影响的实验条件为:在硝酸浓度为2 mol·L−1和洗涤时间为60 min时,取液固比为5、10、15、20、25、30。
3) 在洗涤时间影响的实验中,选择硝酸浓度为2 mol·L−1和液固比为10,考察洗涤时间为5、30、60、120、240、360、480 min时的洗涤效果。
-
电沉积装置结构示意图如图1所示,在中间固定阴离子交换膜 (G1204,天津市兰力科化学电子高技术有限公司) 和阳离子交换膜 (G0014,天津市兰力科化学电子高技术有限公司) 将电解槽分为阴极室、中间室和阳极室。采用由阴、阳离子交换膜分隔的三室电解槽结构,其目的是为了阻隔废水中的阴离子通过离子迁移转移到阳极,从而防止飞灰中含有的大量氯盐在洗涤进入溶液后,电解时在阳极发生副反应产生氯气而污染环境;同时也能防止阳极区生成的O2迁移至阴极区而腐蚀阴极表面的金属沉积物。在电沉积处理含重金属的废水时,将酸洗滤液置入阴极室,中间室加入0.1 mol·L−1 HCl溶液,阳极室加入0.1 mol·L−1 Na2SO4溶液。在电沉积期间持续搅拌以保持传质。氧化铱板用作阳极,直径为6 mm的铜棒用作阴极。直流电源通电电解,所控制的电解参数主要包括电压和电解时间等。
-
表1所示是飞灰元素组成的分析结果。可以看出,飞灰的主要元素组成是Ca、Cl、S、K、Si、Na和Fe等。飞灰中的Ca成分主要源自为吸附焚烧烟气中的酸性气体和痕量有机物而注入的过量石灰。同时,塑料制品、厨余垃圾和其他含氯组分在焚烧过程中存在挥发-冷凝富集现象,因此飞灰中含有较多的可溶性氯盐[25]。表2为飞灰中重金属的全量消解测试结果,结合表1数据可以看出,飞灰中Zn、Pb和Cu的质量分数较高,且毒性较高的Cd也高于检出限。对飞灰中的重金属进行浸出实验的结果显示,浸出液中Zn、Pb、Cu和Cd的质量浓度分别达到9.971、1.030、0.620和0.340 mg·L−1,其中Pb和Cd明显超过《生活垃圾填埋场污染控制标准》(GB 16889-2008)[26]规定的限值0.25和0.15 mg·L−1,说明该飞灰具有较强的重金属浸出毒性。因此,本研究主要关注Zn、Pb、Cu和Cd 4种重金属的浸出情况。
采用XRD技术对飞灰的矿物学成分进行分析,其结果如图2(a)所示。可以看出,飞灰具有CaCO3和Ca(OH)2相,这使得飞灰具有极强的酸缓冲能力。然而,飞灰中非晶态物质占比约为50%~55%[27],高占比的无定形物质增强了XRD衍射花样的噪声背景,掩盖了一些晶体衍射的特征峰。因此,通过XRD测定结果很难分析和识别飞灰中重金属的具体矿物相种类。飞灰的SEM结果如图2(b)所示。从中可看出,无定形颗粒松散地排列,颗粒大小不一,呈近似球状,表面疏松多孔,这将大大增加飞灰的比表面积,从而使飞灰中的可溶性盐和重金属具有易浸出的特性。
-
在飞灰的洗涤预处理中,常用的无机酸包括HCl、HNO3和H2SO4等。由于飞灰酸洗产生的Pb2+和大量Ca2+能与SO42−反应生成难溶物而覆盖飞灰颗粒表面,阻碍洗涤反应的进一步进行。因此,H2SO4作为浸出试剂是不适宜的。HCl和HNO3均具有较高的酸洗去除飞灰中重金属的能力,特别是高浓度的HCl,Cl−可与金属离子形成配合物,如[PbCl4]2−等,这有利于重金属浸出率的提高。但配合物通常带有较多的负电荷,在阴极表面所受到的电场排斥力较大。同时,相较于简单金属离子,配合物因具有较低的能态而更加稳定,放电时需要克服更高的活化能垒,使电沉积所需的电压升高,最终导致金属电沉积回收成本提高。因此,选用盐酸作为浸出剂对浸出废液的电沉积处理不利。而高浓度的HNO3具有一定的氧化性,可以洗出飞灰中较难溶的重金属。因此,选择硝酸作为浸出剂进行研究。
图3所示是不同酸洗条件对重金属洗涤去除率影响的测定结果。从图3(a)硝酸浓度的影响中可以看出,当用0.5 mol·L−1的HNO3浸渍洗涤时,飞灰中各重金属的浸出去除率均较低,仅为1%左右,这是因为此时所用HNO3的浓度较低。在洗涤的初期,其中的H+均已被飞灰中高质量分数的CaCO3、Ca(OH)2等所消耗,飞灰颗粒的结构未被破坏,包裹在颗粒内部的金属离子外迁浸出困难,最终导致浸出去除率较低。这一结果也说明,飞灰具有较强的酸缓冲能力,想消耗较少酸从飞灰中彻底洗出重金属几乎是不可能的。在硝酸浓度为1.0 mol·L−1时,各重金属的去除率均得到显著提高,其中Cd的去除率已达80%以上。此时飞灰颗粒的表层结构已遭到酸的溶解破坏,这对颗粒内部金属离子的外迁浸出是有利的。随着硝酸浓度的进一步提高,重金属的去除率也在不断提高,在硝酸浓度提高至2.0 mol·L−1后,重金属去除率的增速已明显变缓,再提高硝酸的浓度对飞灰中重金属的溶出已意义不大。考虑到飞灰处理的效果和硝酸的消耗量,选择浓度为2.0 mol·L−1的硝酸作为酸洗剂较为合适。
液固比是影响酸洗效果的另一重要因素。如图3(b)所示,当液固比在5~30范围内,随着液固比的增加,重金属的去除率起初急剧增加,然后缓慢增加并最终趋于平稳。当液固比超过10之后,液固比的增加对Zn浸出的影响最为明显,对Cu浸出的影响次之,而对Pb和Cd浸出的影响较小,说明Zn和Cu的浸出主要受酸溶解过程控制。在液固比为30处,Zn、Pb、Cu和Cd的去除率分别达到98.44%、86.35%、74.66%和97.46%。综合考虑重金属的浸出效果和硝酸的消耗量,液固比为25应是较为合适的洗涤浸出条件。
洗涤时间对重金属浸出去除率的影响如图3(c)所示,在洗涤时间达到60 min时,Zn、Cu和Cd的去除率已基本稳定,即其溶解基本达到平衡,而此时Pb的浸出去除率仍在显著地增加,其达到稳定的浸出时间大致在360 min之后。根据JIAO等[28]的浸出试验结果,Cu和Zn的沉淀-吸附平衡与飞灰中含钙化合物显著相关,在强酸性条件下碳酸钙等的溶解将导致Cu和Zn的快速浸出。同时,CAVIGLIA等[29]的浸出动力学研究表明,Pb的扩散过程非常缓慢,这可能是Pb浸出达到平衡需要更长时间的原因。
在硝酸浓度为2 mol·L−1、液固比为25和洗涤时间为60 min条件下,酸洗能去除飞灰中95.26%的Zn、83.06%的Pb、72.62%的Cu和97.85%的Cd。延长洗涤时间至360 min,可将Pb的去除率提升至85%以上。林涛等[17]采用盐酸洗涤飞灰,使Pb生成了配合物[PbCl4]2−,这虽能进一步提高Pb的去除率,但由于[PbCl4]2−带有负电荷且比简单金属离子更加稳定,在后续浸出废液的电沉积处理时,将极大地增加Pb在阴极表面上析出回收的难度。因此,采用硝酸洗涤更为合适。
-
酸洗后飞灰的微观形貌如图4(a)所示,对比图2(b)酸洗前飞灰的微观形貌可以看出,酸洗后飞灰中疏松多孔的非晶态物质大部分得到溶解,粒径显著缩小,使棒状或条状晶体颗粒充分暴露出来。这进一步表明飞灰的成分较为复杂,酸洗能将包裹飞灰颗粒的CaCO3和Ca(OH)2外壳去除,同时也能去除飞灰中大量的水溶性离子 (如Cl−、Na+等) ,将飞灰中的金属组分释放出来,从而显著降低洗后飞灰的浸出毒性,为垃圾焚烧飞灰的资源化利用提供了可能。
BCR顺序提取将飞灰中重金属组分按其浸出的难易程度分为可溶解态>可氧化态>可还原态>残渣态,其中可溶解态和可还原态是对环境危害最大的形态,残渣态是最稳定的形态,也是最不易被释放出来的形态。从图4(b)所示的飞灰酸洗前后BCR形态分布图中可以看出,在酸洗前飞灰中可溶解态占比较低,这也进一步说明了飞灰具有极强的酸缓冲能力,仅靠水和弱酸很难分离飞灰中的重金属。可氧化态占了较大的比重,Zn、Pb和Cu的可氧化态占比分别为47%、33%和40%,而Cd则达到了84%。这说明未处理的飞灰极易浸出,对环境危害极大。而在酸洗处理之后,这一比重显著下降,残渣态成分明显提高,Zn、Pb、Cu和Cd的残渣态成分分别占到总量的72%、75%、65%和42%。这说明酸洗对飞灰有很强的净化效果,使得易浸出组分大幅降低,残渣态组分占比升高。易浸出组分被分离去除或转化为更加稳定的形态,使酸洗后的飞灰更具稳定性,浸出能力降低,对环境的危害减小。
酸洗前后飞灰的浸出毒性测试结果如表3所示。可以看出,酸洗前飞灰浸出液中Pb和Cd的质量浓度均显著高于《生活垃圾填埋场污染控制标准》(GB 16889-2008)[26]规定的浸出液质量浓度限值,而酸洗后飞灰中各重金属浸出质量浓度大幅降低,均低于限值。酸洗后的飞灰可直接进入生活垃圾填埋场进行填埋处理,也可作为非危废固体进行资源化开发利用。
-
为评估电沉积技术用于回收酸洗废液中重金属的可行性,将飞灰酸洗废液用于电沉积处理,所用酸洗废液的Zn、Pb、Cu和Cd质量浓度分别为95.08、50.79、13.23和5.61 mg·L−1。图5(a)是在电沉积时间为4 h时电压对金属回收率影响的测定结果。可以看出,各重金属离子的回收率与电压呈正相关,电压越高,回收率也越高。由于飞灰的组成较为复杂,其酸洗废液也具有较复杂的组成,酸洗废液中往往含有影响重金属回收率的杂质离子,如溶液中Cl−浓度过高会使氧化还原电位升高,并抑制Zn的析出[30],这将导致在低电压时Zn的回收率极低,如在电压为6 V时仅能回收27.89%。在酸洗废液中含有大量的H+,并且H+的析出能力较强,其会与重金属离子在阴极竞争电子而不利于金属的析出,这也会降低重金属的回收率。随着电沉积反应的进行,酸洗废液中金属离子的质量浓度不断降低,致使析出电位不断提高,当施加电压不足以继续析出金属时,反应达到平衡,只有进一步提高电压,电沉积反应才能继续进行。在电压为8 V时,Pb的回收率可高达96.15%,而后基本保持平稳。Zn在电压为6~12 V区间内回收率迅速升高,从27.89%提高至90.68%,这表明电压提高后,在较强电场作用下金属离子的电迁移速率加快,克服了Cl−对Zn析出的抑制作用。在电压为14 V时,Zn、Pb、Cu和Cd的回收率分别达到了95.80%、99.04%、79.95%和90.37%,处理后废液中Zn、Pb、Cu和Cd的残余质量浓度分别为3.99、0.49、2.65和0.54 mg·L−1,仍不能满足排放要求,若继续提高电压进行更长时间的电沉积将导致处理费用急剧增加,可行的方案是将处理后的废液用于酸洗剂的配制,进入下一批次的飞灰洗涤而得到循环利用。
在电压为16 V时,电沉积时间对重金属离子回收率的影响如图5(b)所示。可以看出,重金属离子回收率均随沉积时间的延长而升高,在电沉积时间为4 h时基本到达稳定,表明析出反应已基本达到平衡。电沉积反应刚开始时,废液中重金属离子质量浓度较高,电极表面的活性位点也较多,这有利于金属离子电沉积的进行。但实际情况中回收率均不高,一方面原因是沉积反应时间较短,另一方面可能是因为酸洗废液中含有大量的H+。H+扩散传质速率较快,还原电位较低,析氢副反应与重金属离子的析出反应存在竞争,导致重金属离子还原析出缓慢。随着时间的延长,由于H2的析出而使溶液中H+浓度逐渐降低,析氢副反应减少,重金属离子的沉积反应速率得到提高,这与在2~4 h时间范围内重金属离子回收率的增加随时间的延长而大致是加快的结果是一致的。
-
1) 硝酸洗涤能有效去除飞灰中的重金属,其去除率随硝酸浓度、液固比、洗涤时间的增加而提高。在硝酸浓度为2 mol·L−1、液固比为25和浸出洗涤时间为60 min时,酸洗能去除飞灰中95.26%的Zn、83.06%的Pb、72.62%的Cu和97.85%的Cd。
2) 酸洗使飞灰中的重金属浸出毒性降低1~2个数量级,使其满足《生活垃圾填埋场污染控制标准》(GB 16889-2008)要求,可以直接进入生活垃圾填埋场进行填埋,也可作为非危废固体进一步资源化开发利用,这对“无废城市”的建设和循环经济都具有重要意义。
3) 采用三室电解槽体系,在电压为14 V时,电沉积4 h可回收酸洗废液中95.80%的Zn、99.04%的Pb、79.95%的Cu和90.37%的Cd。处理后的废液仍含有一定质量浓度的重金属,其可用于酸洗剂的配制而得到循环利用。
酸洗-电沉积联用技术回收垃圾焚烧飞灰中的重金属
Recovery of heavy metals from municipal solid waste incineration fly ash by the combined acid washing and electrodeposition technology
-
摘要: 垃圾焚烧飞灰中的重金属浸出能力强、毒性大,属于危险废物,若处置不当将会对环境造成严重污染。采用酸洗-电沉积联用技术,考察硝酸浓度、液固比和酸洗时间对重金属去除率的影响,研究电沉积电压和时间对酸洗废液中重金属回收率的影响,同时评估处理后飞灰的浸出毒性。结果表明,在浓度为2 mol·L−1、液固比为25的硝酸中浸渍洗涤60 min条件下,酸洗能成功去除飞灰中95.26%的Zn、83.06%的Pb、72.62%的Cu和97.85%的Cd;在电压为14 V,电沉积4 h的条件下可回收酸洗废液中95.80%的Zn、99.04%的Pb、79.95%的Cu和90.37%的Cd。对Zn、Pb、Cu、Cd的连续提取和浸出毒性测试表明,处理后飞灰易浸出组分占比降低,残余态物质占比提高,重金属浸出质量浓度符合《生活垃圾填埋场污染控制标准》(GB 16889-2008)要求,可直接进行填埋或作为非危废固体进行资源化利用。本研究结果可为飞灰中重金属脱除和回收利用提供参考。Abstract: The municipal solid waste incineration fly ash is classified as hazardous waste and will cause serious pollution to the environment if disposed improperly, owing to its strong leaching ability and high toxicity of heavy metals. Herein, the combined acid washing and electrodeposition technology was used to study the effects of the nitric acid concentration, liquid-solid mass ratio, acid washing time on the removal rate of heavy metals, and the effects of electrodeposition voltage and time on the recovery rate of the heavy metals from the acid washing waste solution, as well as to evaluate the leaching toxicity of the treated fly ash. The results showed that 95.26% of Zn, 83.06% of Pb, 72.62% of Cu and 97.85% of Cd were successfully removed from fly ash after immersing and washing for 60 min in nitric acid with concentration of 2 mol·L−1 and liquid-to-solid ratio of 25. Meanwhile, 95.80% of Zn, 99.04% of Pb, 79.95% of Cu and 90.37% of Cd in the acid washing waste solution were recovered at a voltage of 14 V and 4 h of electrodeposition. The continuous extraction and leaching toxicity tests of Zn, Pb, Cu and Cd demonstrated that the content of easily leachable components of the washed fly ash decreased, the proportion of residual state materials increased, and the leaching mass concentration of heavy metals met the requirements of “Pollution Control Standards for Domestic Waste Landfills” (GB 16889-2008), as thus, the acid washed fly ash can be directly landfilled or used as a non-hazardous waste solid for resource utilization. This study can provide a reference for the removal and recovery of heavy metals from fly ash.
-
精神活性物质是指对人类中枢神经系统具有强烈兴奋或抑制作用的成瘾性物质,主要包括:阿片类,可卡因、海洛因和美沙酮等;安非他命类,苯丙胺、甲基苯丙胺和摇头丸等;大麻类,大麻酚和四氢大麻酚等[1]。《2021年世界毒品形势报告》显示,全球超过约2.75亿(15—64岁)人口,在过去一年中至少使用过一次精神活性物质,比2010年增加22%,每年约50万人直接死于精神活性物质的滥用[2],精神活性物质的滥用已经成为全球关注的问题。精神活性物质进入人体后,经过肌体的新陈代谢,以药物母体及其代谢产物的形式排出体外,经由下水道进入污水处理系统。Christian[3]在2001年首次提出,通过检测市政污水中目标物质的浓度与人体药物代谢动力学相结合,可以反推评估该地区精神活性物质的滥用情况及流行率。目前对市政污水中低浓度精神活性物质定性定量检测的主流方法为液相色谱质谱联用法[4]及气相色谱质谱联用法[5]。美国[6-7]、意大利[8]、西班牙[9]、澳大利亚[10]等多个国家已经利用Christian提出的方法开展了多种精神活性物质滥用情况的调查研究。
目标覆盖区域的服务人口数是利用精神活性物质滥用情况反推其滥用量及流行率过程中一个非常重要的参数,其数值的合理性和准确程度极大影响着推算结果的准确度。目前,目标覆盖区域服务人口数的推算方法主要有静态法和动态法,静态法有设计容量法和人口普查法等;动态法有水质参数法,常用的水质参数包括氨氮(NH4-N)、化学需氧量(COD)和总氮(TN)等[11],生物标志物法,常用的生物标志物包括可替宁、肌酸酐和咖啡因等[12]。其中设计容量法更偏向污水处理厂初建时设计的服务人口数,水质参数法和人均用水量法受工业污水占比影响较大,生物标志物法会受到年龄和身体状况等参数的影响,造成吸收和代谢的比例不一致。每种推算方法都有自身的特点和局限性,会给调查结果带来不确定性。因此,服务人口数的估算直接影响目标物滥用量和流行率的反演推算结果。
本研究使用层次分析法,综合多种目标覆盖区域服务人口数的估算方法,建立多参数人口模型,以此获得更为准确的服务人口数,并应用于精神活性物质滥用量和流行率的评估。
1. 材料与方法(Materials and methods)
1.1 实验材料
实验试剂与耗材:甲基苯丙胺(METH)、苯丙胺(AMP)、吗啡(MOR)、O6乙酰吗啡(6MAM)、可替宁(CTN)(1 mg·mL−1,美国Cerilliant公司);甲基苯丙胺-d8(METH-d8)、苯丙胺-d8(AMP-d8)、吗啡-d3(MOR-d3)、O6乙酰吗啡-d3(6MAM-d3)、可替宁-d3(CTN-d3)(100 μg·mL−1,美国Cerilliant公司);甲醇、二氯甲烷、氨水(色谱纯,上海安谱实验科技股份有限公司);盐酸(分析纯,国药集团化学试剂有限公司)、MCX固相萃取柱(3mL, 60 mg,美国Waters公司),玻璃纤维滤膜(0.45 μm,Whatman GF/F);
实验设备:Thermo Scientific TSQ Endura型高效液相色谱质谱仪(美国Thermo Scientific公司),WD-12型氮吹仪(杭州奥盛仪器有限公司),12孔配真空抽干装置固相萃取仪(美国Supelco公司),XW-80A型旋涡混合器(上海精科实业有限公司)。
1.2 样品采集
样品采集于我国西北部某城市主城区污水处理厂(S1、S2、S3、S4)和县(市、区)污水处理厂(X1、X2、X3、X4),以上8个污水处理厂基本覆盖该市所有行政区,覆盖人口数约占全市人口总数的89%。使用自动取样器于2019年冬季和2020年夏季,在污水处理厂进水口采集24 h混合水样约400 mL,样品连续采集一周。精神活性物质的吸食频率存在一定的周期性,连续采集样品一周基本能反映一个地区精神活性物质的滥用情况。样品采集后存放于聚酯(PET)瓶内,加盐酸调节pH≤2,冷冻运输至实验室,待后续分析。
1.3 样品前处理
样品在常温下解冻,经0.45 μm的玻璃纤维滤膜过滤,振荡混合均匀,量取50 mL滤液并添加氘代内标为待测样,固相萃取富集目标物:分别用甲醇、超纯水和pH 2的盐酸水溶液充分活化并平衡固相萃取柱,固相萃取待测样,样品流速控制在每滴1—2 s。富集完成后真空干燥固相萃取柱,依次用甲醇和5%氨水/甲醇溶液(M/M)淋洗洗脱并收集洗脱液。洗脱液在柔和氮气吹至近干后用20%(V/V)甲醇水复溶,转移至色谱瓶进行二次氮吹,最后用200 μL 20%(V/V)甲醇水溶液定容。
1.4 样品分析
使用Thermo Scientific TSQ Endura型高效液相色谱-质谱联用仪进行分析。色谱条件为:Waters XTerra MS C18反相色谱柱(100 mm×2.1 mm, 3.5 μm),流动相A为0.12%甲酸和30 mmol·L−1甲酸铵水溶液,B相为甲醇,流速0.3 mL·min−1,柱温30℃,进样量5 μL。质谱选用电喷雾离子源(ESI),采用ESI(+)模式。目标物特征选择离子、质谱条件及回收率如表1所示。
表 1 目标物特征选择离子、质谱条件及回收率Table 1. Target feature selection ions, mass spectrometry conditions and recovery rate物质Compound 母离子Parent ionm/z 定量离子Quantitative ion 定性离子Qualitative ion 保留时间/minRetention time 回收率/%Recovery rate m/z DP/V CE/V m/z DP/V CE/V MOR 286.0 152.1 82.0 55.0 165.0 82.0 32.0 2.73 88.45±5.22 MOR-d3 289.2 152.1 80.0 55.0 165.0 80.0 41.0 2.72 — 6MAM 328.1 165.3 90.0 36.0 211.3 90.0 36.0 4.35 84.61±3.40 6MAM-d3 331.1 165.1 90.0 38.3 211.2 90.0 25.0 4.36 — METH 150.1 91.1 30.0 16.0 119.1 30.0 16.0 4.62 101.65±4.95 METH-d8 158.2 93.2 40.0 19.0 124.2 40.0 10.3 4.59 — AMP 136.1 91.1 40.0 21.0 119.1 40.0 21.0 4.51 99.00±4.90 AMP-d8 144.2 127.2 40.0 10.3 97.2 40.0 16.0 4.44 — CTN 177.2 80.2 30.0 24.0 101.2 30.0 11.0 3.09 98.31±4.78 CTN-d3 180.1 80.2 30.0 25.0 101.2 30.0 22.4 3.08 — 1.5 质量控制
配制浓度分别为:1.56、3.13、6.25、12.50、25.00、50.00、100.00、150.00、200.00、250.00、300.00 μg·L−1的混合标准溶液,绘制标准曲线,线性良好(R2≥0.999)。
为确定目标物回收率在合理范围内,每12个样品添加一组浓度为100.00 μg·L−1的混合标准溶液为质控样品,结果显示目标物的回收率均在85%—105%之间。同时每12个样品添一组空白实验。
1.6 计算方法
利用水质参数法、生物标志物法和人均用水量法计算服务人口数,具体计算方法如式所示:
PT=CT×FmT (1) 式(1)中,PT是通过水质参数T计算后得到的服务人口数(万人);CT为水质参数T的浓度(mg·L−1);mT是水质参数T的人均产生量(g·d−1);F为污水处理厂日均处理量(104 m3·d−1)。
本文选用的水质参数T为氨氮(NH4-N),由于地区、生活习惯、年龄和性别比例的不同,人均排放量的比例亦不相同,结合文献调查结果[13-14]和该市具体情况,人均排放量mT取值为10 g·d−1。
PS=CS×FmS (2) 式(2)中,PS是通过生物标志物S计算后得到的服务人口数(万人);CS为生物标志物S的浓度(mg·L−1);mS是生物标志物的日产生量(g·d−1);F为污水处理厂日均处理量(104 m3·d−1)。
本文选用的生物标志物为可替宁,根据该市的烟草消耗、尼古丁含量及其在人体内代谢比例,运用水晶球软件模拟得到该市人均可替宁日产生量为1.47 mg·d−1。
PQ=Q10−3¯Q (3) 式(3)中,PQ是通过人均用水量法计算得到的服务人口数(万人);Q为污水处理厂日均处理污水量(104 m3·d−1);
为该市人均用水量(L·d−1)。¯Q 该市2019年水资源利用公报显示,城镇居民和农村居民人均用水量分别为123 L·d−1和52.9 L·d−1。
检验层次分析法建立模型的合理性与可靠性,需要对判断矩阵一致性进行检验,公式为:
C.I.=λmax−nn−1 (4) C.R.=C.I.R.I. (5) 式(4)和(5)中,C.I.为计算一致性指标;λmax为判断矩阵的最大特征值;n为矩阵阶数;R.I.是判断矩阵特征值的算术平均数,当n=4时取值0.90;C.R.为计算一致性比例。
精神活性物质滥用量及流行率的具体计算公式如下:
Ci,1=Ci,2×Mi,1E×Mi,2 (6) 式(6)中,Ci,1是精神活性物的浓度(μg·L−1);Ci,2是精神活性物质标志物的浓度(μg·L−1);Mi,1和Mi,2分别是精神活性物及其标志物的分子质量;E是精神活性物质标志物的代谢率,甲基苯丙胺的生物标志物为母体,代谢率为42%,海洛因的生物标志物为吗啡,代谢率为77%[15]。
mi=Ci,1×F'P (7) 式(7)中,mi是精神活性物质的人均滥用量(μg·d−1);Ci,1是精神活性物的浓度(10−3 μg·L−1);F'是污水处理厂进水流量(104 m3·d−1);P是服务人口数(万人)。
PR(%)=miR18—60×D×n×100\% (8) 式(8)中,PR为特定时间内,使用某种精神活性物质的人群数量占18——60岁总人数数量的比例;R18—60是该市居民中18—60岁的成年人口比例,经调查该市居民18—60岁成年人口的比例为62.4%;D是精神活性物质使用的典型剂量大小(mg·次−1),n是每天的平均使用频率(次·d−1)。
Bao等[16]研究发现,甲基苯丙胺的典型剂量为(135±80)mg·次−1,平均使用频率为0.31 次·d−1;陈小波,乔静等[17-18]研究发现,海洛因的典型剂量为44 mg·次−1,平均使用频率为2.40 次·d−1。
2. 结果与讨论(Results and discussion)
2.1 污水处理厂服务人口数计算模型
计算所需相关参数大小如表2所示。通过各方法获得的污水处理厂服务人口数,相关数据如表3所示。
表 2 各方法相关参数Table 2. Correlation parameters of each method污水处理厂Sewage treatment plant 日处理污水量/万tDaily amount of sewage treated NH4-N/(mg·L−1) 可替宁/(μg·L−1)Cotinine concentration S1 7.50 67.50 5.88 S2 15.00 60.72 5.29 S3 7.50 49.98 6.21 S4 5.50 49.57 6.07 X1 1.00 107.93 8.05 X2 0.50 30.97 4.46 X3 0.30 50.45 6.34 X4 2.00 28.39 4.14 表 3 污水处理厂服务人口数(万人)Table 3. Population served by sewage treatment plant (ten thousand people)污水处理厂Sewagetreatment plant 专家估算人口Expert estimates of population 设计容量法Design capacity method 水质参数法Water quality parameter method 生物标志物法Biomarker method 人均用水量法Per capita water consumption 多参数模型法Multi-parameter model method S1 41.1 30.0 50.6 30 48.8 37.2 S2 52.1 70.0 91.1 54 85.4 68.1 S3 40.7 50.0 37.5 32 42.7 36.3 S4 22.0 27.0 27.3 23 44.7 27.2 X1 4.70 6.00 11.0 5.5 15.3 8.08 X2 2.00 2.30 1.50 1.5 4.80 2.00 X3 1.54 3.00 1.50 1.3 4.00 1.85 X4 5.72 8.00 5.70 5.6 30.7 9.10 专家估算人口是以该市统计年鉴人口数为基础,结合污水处理厂日内污水流量波动、日间污水处理量波动和污水来源组成等因素综合推算得到的污水处理厂服务人口数。Castiglioni等[19]认为专家估算人口是最可靠的服务人口数的估算方法,因此以专家估算人口数为标准判断各方法推算服务人口数的准确度。但是该方法耗时耗力且经济成本较高。设计容量法是一种较为方便和简单获得服务人口数的方法,但是设计容量法获得的人口数更偏向污水处理厂初建设计的服务人口数,获得的服务人口数往往高于实际人口数。但也存在一些污水处理厂满负荷运行,甚至高于污水处理厂初建设计的服务人口数,如S1。而通过水质参数法推算的服务人口数,会受到工业污水的影响,导致主城区服务人口数偏高。主要是因为主城区4个污水处理厂的工业污水业占比较高,导致氨氮数据偏高,从而影响服务人口数的估算。生物标志物法推算的服务人口数也会与真实服务人口数有所差异,这是因为可替宁是尼古丁通过细胞色素P450(CYP)亚型2A6介导产生的代谢物[20],年龄和身体状况的差异,会导致尼古丁代谢为可替宁的比例不同。人均用水量法推算得到的服务人口数明显偏高,主要原因有两个方面,一是污水处理厂的人均用水量数据比实际值高;二是污水处理厂的工业污水占比比登记值高,从而导致推算结果的偏高。
由此可见,使用不同方法推算污水处理厂的服务人口数会得到不同的数据,每种方法都有其自身的特点和局限性,为减小单个计算方法带来的不确定性,本文使用层次分析法对不同参数所占的权重进行计算,建立污水处理厂服务人口数多参数计算模型。
在层次分析中,以可替宁计算得到的服务人口数为基础,其他方法推算的服务人口数与可替宁推算人口的相关系数矩阵(表4)作为依据,使用1—9标度法对重要性进行对比打分,将服务人口数相关系数矩阵转为服务人口数判断矩阵(表5),对不同方法的权重进行赋值。
表 4 服务人口数相关系数矩阵Table 4. Correlation coefficient matrix of service population设计容量人口Design capacity population 水质参数法Water quality parameter method 生物标志物法Biomarker method 人均用水量法Per capita water consumption 设计容量人口 1 0.55 0.43 0.83 水质参数法 1 0.53 0.77 生物标志物法 1 0.57 人均用水量法 1 表 5 服务人口数判断矩阵Table 5. Judgment matrix of service population设计容量人口Design capacity population 水质参数法Water quality parameter method 生物标志物法Biomarker method 人均用水量法Per capita water consumption 设计容量人口 1 1/4 1/5 1 水质参数法 4 1 1/4 2 生物标志物法 5 4 1 3 人均用水量法 1 1/2 1/3 1 计算得到的多参数人口模型公式为:
P=0.09×P设计容量法+0.23×P水质参数法+0.55×P生物标志物法+0.13×P人均用水量法 (9) 对矩阵的一致性进行检验,得到C.R.为0.078<0.1,认为矩阵的一致性是可以接受的。
各方法计算得到的服务人口数与专家估算服务人口数相关性分析如图1所示。相关性分析中,设计容量法的R2=0.9037,水质参数法的R2=0.8850,生物标志物法的R2=0.9238,人均用水量法的R2=0.8238,多参数模型法的R2=0.9472,其中多参数模型法得到的服务人口数与专家估算的服务人口数相关性最强,更能够准确反映服务人口数。
2.2 全市精神活性物滥用情况
该市2019和2020年甲基苯丙胺和海洛因人均滥用量如图2所示。在2019年和2020年两次精神活性物质滥用调查中,每个样品均检出甲基苯丙胺和吗啡,甲基苯丙胺的人均滥用量分别为(112.60±25.20)μg·d−1和(92.81±28.41)μg·d−1;海洛因的人均滥用量分别为(31.70±10.93)μg·d−1和(25.65±11.42)μg·d−1。以《2019年中国毒品形势报告》、《2020年中国毒情形势报告》和该市公安部门提供的吸食精神活性物质信息为基础,从图2可以看出,该市主要吸食的传统精神活性物质为甲基苯丙胺,这也与《2020年中国毒情形势报告》相一致,同时该地区海洛因滥用量水平低于全国滥用量水平[21-22]。与2019年相比,2020年精神活性物质滥用量有所减小。我国传统精神活性物质以甲基苯丙胺和海洛因为主,因此精神活性物质总滥用量多采用两种物质加和的形式[21-22],该市精神活性物质总滥用情况为2019年(144.30±30.56)μg·d−1和2020年(118.46±37.34)μg·d−1。这与该市公安部门自2019年起加强对精神活性物质制造、贩售和吸食等行为的打击力度有着密不可分的关系。同时考虑到我国有近85%的毒品来源于金三角、金新月和北美等境外地区,2020年新冠疫情致使国内涉毒行为和境外流动受限也是导致精神活性物质滥用量下降的一个原因。对该市八个主城区及县(市、区)的精神活性物质滥用调查发现该市S2和S3的AMP/METH比值高于苯丙胺全部由甲基苯丙胺代谢的理论比值0.05—0.24[23](S2比值为0.99±0.17,S3比值为0.83±0.19),说明这两个地区苯丙胺存在其他来源。我国临床禁止使用苯丙胺类药物,因此可以推断这两个地区存在苯丙胺的滥用。同时该市的滥用量均小于北京、广州和大连等地[24-26],主城区高于县(市、区),说明精神活性物质的滥用情况与经济发展程度有关。这也与Bishop等[27]对小城市和农村精神活性物质的滥用量调查结果相一致,城市化水平和经济发展程度更高以及富裕人口更多的小城市,精神活性物质的滥用量高于农村精神活性物质的滥用量。经济的迅速发展导致人们生活节奏变快,在心理上,人们往往会选择吸食精神活性物质来释放压力,从而使得经济条件发达的地区精神活性物质的滥用情况更严重。
2.3 全市精神活性物质流行率
该市2019和2020年精神活性物质流行率,如表6所示。该市2019和2020年甲基苯丙胺的流行率分别为0.49%±0.17%和0.34%±0.11%,2019和2020年海洛因的流行率分别为0.48‰±0.17‰和0.39‰±0.18‰。该市18—60岁成年人甲基苯丙胺的流行率在Shao等[28]调查的全国15—65岁成年人甲基苯丙胺流行率0.08%—1.25%范围内,低于Pei等[29]对北京甲基苯丙胺流行率的估算。海洛因流行率低于Du等[26]调查的全国主要城市海洛因的平均流行率1.01‰。甲基苯丙胺的流行率与海洛因的流行率相比处于较高水平,这也与近年来甲基苯丙胺缉获量远高于海洛因缉获量这一事实相符合。造成以上现象的主要原因是甲基苯丙胺在中国更容易获得,其合成几乎不受地理位置的限制,从而导致甲基苯丙胺的流行率在某种程度上远高于海洛因的流行率。
表 6 精神活性物质流行率Table 6. Epidemic rate of psychoactive substances污水处理厂Sewage treatment plant 2019年 2020年 METH流行率/%Prevalence rate MOR流行率/‰Prevalence rate METH流行率/%Prevalence rate MOR流行率/‰ Prevalence rate S1 0.46 0.48 0.57 0.56 S2 0.60 0.48 0.41 0.55 S3 0.49 0.39 0.37 0.23 S4 0.45 0.43 0.28 0.35 X1 0.30 0.54 0.24 0.44 X2 0.26 0.19 0.19 0.05 X3 0.50 0.52 0.32 0.60 X4 0.83 0.83 0.35 0.35 3. 结论(Conclusion)
利用设计容量法、水质参数法、生物标志物法和人均用水量法对污水处理厂的服务人口数进行推算,使用层次分析法对权重进行赋值,建立了更合理的污水处理厂服务人口数估算模型,同时评估了2019和2020年该市精神活性物质的滥用量和流行率。结果显示,该市2019和2020年甲基苯丙胺的人均滥用量为(112.60±25.20)μg·d−1和(92.81±28.41)μg·d−1,流行率为0.49%±0.17%和0.34%±0.11%;海洛因的人均滥用量(31.70±10.93)μg·d−1和(25.65±11.42)μg·d−1,流行率为0.43‰±0.10‰和0.41‰±0.18‰。该市2020年较2019年精神活性物质的滥用量有所下降,不仅是因为公安机关加大了对毒品制造、贩卖、吸食的打击力度,也是新冠疫情防疫措施导致毒品的流通受阻所带来的结果,同时经济发展水平在一定程度上也影响了精神活性物质的滥用程度。
-
表 1 垃圾焚烧飞灰的XRF分析结果
Table 1. XRF analysis results of the MSWI fly ash
% (质量分数) Ca Cl S K Si Na Fe Mg Zn Al Pb Ti 36.23 15.82 8.77 4.21 2.21 1.17 1.1 0.762 0.44 0.41 0.21 0.21 P Cr Br Cu Ba Mn Sb Sr Sn Rb Cd Ni 0.18 0.08 0.61 0.059 0.058 0.041 0.037 0.032 0.029 0.011 0.007 0.004 表 2 飞灰中重金属质量分数
Table 2. Mass fraction of heavy metals in MSWI fly ash
mg·kg−1 Zn Pb Cu Cd 2872 1166 588 107 表 3 酸洗前后飞灰浸出液的重金属质量浓度
Table 3. Mass concentrations of heavy metal in fly ash leaching solution before and after acid washing
mg·L−1 -
[1] 中华人民共和国国家统计局. 2020中国统计年鉴[M]. 北京: 中国统计出版社, 2020. [2] LI G L, WU Q R, WANG S X, et al. The influence of flue gas components and activated carbon injection on mercury capture of municipal solid waste incineration in China[J]. Chemical Engineering Journal, 2017, 326: 561-569. doi: 10.1016/j.cej.2017.05.099 [3] 蒋旭光, 段茵, 吕国钧, 等. 垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展[J]. 环境工程学报, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098 [4] BAI R B, SUTANTO M, The practice and challenges of solid waste management in Singapore[J]. Waste Management, 2002, 22: 557-567. [5] SHI H S, KAN L L, Characteristics of municipal solid wastes incineration (MSWI) fly ash–cement matrices and effect of mineral admixtures on composite system[J]. Construction and Building Materials, 2009, 23(6): 2160-2166. [6] LUO H W, HE D Q, ZHU W P, et al. Humic acid-induced formation of tobermorite upon hydrothermal treatment with municipal solid waste incineration bottom ash and its application for efficient removal of Cu(II) ions[J]. Waste Management, 2019, 84: 83-90. doi: 10.1016/j.wasman.2018.11.037 [7] 生态环境部办公厅. 《“十四五”时期“无废城市”建设工作方案》[EB/OL][2021-12-15]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202112/W020211215761126730366.pdf [8] ZOU D A, CHI Y, FU C, et al. Co-destruction of organic pollutants in municipal solid waste leachate and dioxins in fly ash under supercritical water using H2O2 as oxidant[J]. Journal of Hazardous Materials, 2013, 248-249: 177-184. doi: 10.1016/j.jhazmat.2013.01.005 [9] QUINA M J, BONTEMPI E, BOGUSH A, et al. Technologies for the management of MSW incineration ashes from gas cleaning: new perspectives on recovery of secondary raw materials and circular economy[J]. Science of the Total Environment, 2018, 635: 526-542. doi: 10.1016/j.scitotenv.2018.04.150 [10] LINDBERG D, MOLIN C, HUPA M. Thermal treatment of solid residues from WtE units: a review[J]. Waste Management, 2015, 37: 82-94. doi: 10.1016/j.wasman.2014.12.009 [11] HU Y Y, ZHANG P F, CHEN D Z, et al. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition[J]. Journal of Hazardous Materials, 2012, 207-208: 79-85. doi: 10.1016/j.jhazmat.2011.05.068 [12] YANG Z Z, JI R, LIU L L, et al. Recycling of municipal solid waste incineration by-product for cement composites preparation[J]. Construction and Building Materials, 2018, 162: 794-801. doi: 10.1016/j.conbuildmat.2017.12.081 [13] LI M, Chen J, Lin X, et al. Study on three-stage counter-current water washing desalination characteristics and mechanism of high chlorine waste incineration fly ash[J]. Processes, 2022, 10: 2540. doi: 10.3390/pr10122540 [14] 董光辉, 左武, 赵润博, 等. 水泥窑协同处置生活垃圾焚烧飞灰过程中Pb和Zn的迁移转化特性[J]. 环境工程学报, 2023, 17(1): 250-258. doi: 10.12030/j.cjee.202210043 [15] HU Y Y, ZHANG P F, LI J P, et al. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process[J]. Journal of Hazardous Materials, 2015, 299: 149-157. doi: 10.1016/j.jhazmat.2015.06.002 [16] ZHAO X, WANG L A, WANG L, et al. Distribution of remaining Cd in MSWI fly ash washed with nitric acid[J]. Journal of Material Cycles and Waste Management, 2017, 19: 1415-1422. doi: 10.1007/s10163-016-0535-7 [17] 林涛, 谢巧玲, 陈福明, 等. 基于重金属提取的垃圾焚烧飞灰无害化处理[J]. 环境工程学报, 2018, 12(9): 2642-2649. doi: 10.12030/j.cjee.201804067 [18] HUANG K, INOUE K, HARADA H, et al. Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants[J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 1422-1427. doi: 10.1016/S1003-6326(11)60876-5 [19] 孙福成, 丁慧敏, 柯伟, 等. 城市生活垃圾焚烧飞灰与矿山废水共处置技术研究与工程应用[J]. 环境工程学报, 2016, 10(4): 2151-2156. doi: 10.12030/j.cjee.20160490 [20] 彭腾, 冉雪玲, 杨宁, 等. 采用柠檬酸浸出—电沉积法回收废锂电池中的钴[J]. 湿法冶金, 2021, 40(3): 196-201. doi: 10.13355/j.cnki.sfyj.2021.03.005 [21] 李子良, 徐志峰, 张溪, 等. 酸性含汞溶液中电沉积回收汞的研究[J]. 工程科学学报, 2020, 42(8): 999-1006. [22] 陈熙, 徐新阳, 赵冰, 等. 喷射床电沉积法处理铜镍混合废水[J]. 化工学报, 2015, 66(12): 5060-5066. doi: 10.11949/j.issn.0438-1157.20151074 [23] RAURET G, LOPEZ S J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. doi: 10.1039/a807854h [24] 环境保护部. 固体废物浸出毒性浸出方法醋酸缓冲溶液法: HJ/T 300-2007[S]. 北京: 中国环境科学出版社, 2007. [25] 韩大健, 王文祥, 孙水裕, 等. 城市生活垃圾焚烧飞灰中钾盐浸出研究[J]. 环境科学学报, 2017, 37(6): 2223-2231. doi: 10.13671/j.hjkxxb.2016.0420 [26] 环境保护部. 生活垃圾填埋场污染控制标准: GB16889-2008[S]. 北京: 中国环境科学出版社, 2008. [27] TIAN Y X, THEMELIS N. J, BOURTSALAS A. C. T, et al. Systematic study of the formation and chemical/mineral composition of waste-to-energy (WTE) fly ash[J]. Materials Chemistry and Physics, 2023, 293: 126849. doi: 10.1016/j.matchemphys.2022.126849 [28] JIAO F, ZHANG L, DONG Z, et al. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J]. Fuel Processing Technology, 2016, 152: 108-115. doi: 10.1016/j.fuproc.2016.06.013 [29] CAVIGLIA C, DESTEFANIS E, PASTERO L, et al. MSWI fly ash multiple washing: Kinetics of dissolution in water, as function of time, temperature and dilution[J]. Minerals, 2022, 12: 742. [30] 朱军, 高首坤, 赵奇, 等. F−和Cl−浓度对电沉积锌电化学过程的影响[J]. 材料保护, 2018, 51(1): 28-30,110. -