上海市公园绿地玻璃表面多环芳烃污染特征及源解析

于英鹏, 李传武, 朱天明, 梁峰, 刘敏. 上海市公园绿地玻璃表面多环芳烃污染特征及源解析[J]. 环境化学, 2023, 42(9): 2969-2977. doi: 10.7524/j.issn.0254-6108.2022070504
引用本文: 于英鹏, 李传武, 朱天明, 梁峰, 刘敏. 上海市公园绿地玻璃表面多环芳烃污染特征及源解析[J]. 环境化学, 2023, 42(9): 2969-2977. doi: 10.7524/j.issn.0254-6108.2022070504
YU Yingpeng, LI Chuanwu, ZHU Tianming, LIANG Feng, LIU Min. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons on the glass surface of park green space in Shanghai[J]. Environmental Chemistry, 2023, 42(9): 2969-2977. doi: 10.7524/j.issn.0254-6108.2022070504
Citation: YU Yingpeng, LI Chuanwu, ZHU Tianming, LIANG Feng, LIU Min. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons on the glass surface of park green space in Shanghai[J]. Environmental Chemistry, 2023, 42(9): 2969-2977. doi: 10.7524/j.issn.0254-6108.2022070504

上海市公园绿地玻璃表面多环芳烃污染特征及源解析

    通讯作者: E-mail:mliu@geo.ecnu.edu.cn
  • 基金项目:
    国家自然科学基金(41730646),江苏高校哲学社会科学研究重点项目(2018SJZDI080)和江苏省高等学校自然科学研究面上项目(20KJB170030)资助.

Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons on the glass surface of park green space in Shanghai

    Corresponding author: LIU Min, mliu@geo.ecnu.edu.cn
  • Fund Project: National Natural Science Foundation of China(41730646), the Key Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province(2018SJZDI080) and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(20KJB170030).
  • 摘要: 为研究上海市公园绿地玻璃表面多环芳烃(PAHs)的污染特征及污染源,利用气相色谱-质谱联用仪(GC-MS)对16种优控PAHs质量浓度进行了测定,对玻璃表面PAHs质量浓度的季节分布,组成特征和潜在污染源进行了分析. 此外,利用毒性当量因子(TEFs)对玻璃表面PAHs进行了毒性当量分析. 结果表明,玻璃表面PAHs面积归一化质量浓度在83.6—1689.6 ng·m−2之间,呈现夏季(599.7 ng·m−2)>秋季(533.1 ng·m−2)>春季(464.2 ng·m−2)>冬季(351.4 ng·m−2). PAHs组成特征季节差异明显,4环PAHs在春季(43%)和冬季(42%)的占比最高;而2+3环PAHs在秋季(57%)和夏季(46%)占比最高. BghiP与T-PAHs强相关性说明汽车尾气是玻璃表面PAHs的主要贡献源;异构体比值表明不同季节玻璃表面PAHs主要污染源相对稳定,即为汽车尾气和扬尘源(降尘和裸露表土). 质量归一化处理后的7种致癌性PAHs的质量浓度范围为58.3—1311.8 ng·g−1,TEQ的浓度在夏季(466.6 ng·g−1)>春季(361.0 ng·g−1)>秋季(262.9 ng·g−1)>冬季(214.6 ng·g−1). BaP、DahA和B[b+k]F是主要的致癌单体PAH,共计占TEQ浓度的80%—91%.
  • 突发环境事件是由污染物排放或者生产安全事故、自然灾害等次生的,短时间内可能导致环境质量下降或者造成生态环境破坏的事件[1]。云南省矿产资源极为丰富,尤以有色金属及磷矿著称,被誉为“有色金属王国”,尾矿库泄漏事故次生环境风险突出;地形以高原、山地为主,地势起伏,交通险阻,江河纵横,湖库棋布,道路运输事故引发的突发环境事件高发;位于亚欧板块和印度洋板块交界地带,地质运动活跃导致地震多发和地质灾害频发,易造成企业环保设施受损,导致环境事件发生;地处上游地区,河流和湖泊众多,多数河流具有落差大、水流湍急、流量变化大的特点,且跨国境、跨省界河流多,防范流域突发水污染事件压力大。总体来说,云南省突发环境事件风险特征明显且面临易发多发的高风险态势。

    “十四五”期间,云南省突发环境事件的高风险态势加剧,生态环境应急形势更加严峻。在重金属、跨界污染风险突出的形势下,随着原油、成品油输送网络的形成和石化产业链的延伸,应对石化相关产业存储、运输和生产环节的环境风险挑战逐渐增多。加快推进的交通运输建设,加之公路货运仍占主体地位,危险化学品运输次生突发环境事件概率增加;水运业务快速增长,港口、码头环境风险增大。7级地震平静时长突破历史记录,“十四五”时期地震形势更加严峻复杂。基础设施重大工程建设将加剧地质灾害次生突发环境事件的概率。

    在把握云南省突发环境事件风险特征的基础上,根据云南省“十四五”经济社会发展规划,深入分析产业结构、运输结构、能源结构布局和重点行业发展变化趋势,提前研判“十四五”云南省生态环境应急形势的新特点新趋势,研究生态环境应急规划的思路和重点,针对性做好风险防控和应急准备,提高应急处置及其保障能力,推进生态环境应急体系和能力现代化,对于妥善应对突发环境事件,维护生态环境安全底线,具有十分重要的现实意义。文章立足于云南省环境应急的现状和问题,结合生态环境应急形势分析,提出了云南省“十四五”生态环境应急规划的思路和建议。

    “十三五”时期,云南省管控违法排污造成突发环境事件的成效显著,因违法排污引起的突发环境事件明显减少,但仍需严厉打击危险废物非法转移和倾倒等违法犯罪活动造成的突发环境事件。生产安全事故、道路运输事故和自然灾害次生的突发环境事件多发频发情况短期内难以改变。

    支撑云南省高质量发展的基础仍不牢固,在产业发展方面的短板仍然明显,主要表现在发展方式粗放,制造业产业层次普遍偏低[2]。目前,涉及重大环境风险工艺及物质的石化、化纤、医药、化工、轻工、冶炼、港口/码头、石油天然气及其长输管道等行业在全省均有分布。全省共有尾矿库588座,位居全国第四。2021年,云南省生产事故总量仍然偏大,除道路运输事故外,全省发生各类生产安全事故443起,可能次生突发环境事件的金属非金属矿山事故32起,化工和危险化学品事故5起,工贸行业事故75起[3]

    “十三五”期间,中缅油气管道建成运营,云南省建成投运油气管道总里程达到4 914 km,原油、成品油、天然气三大管网已初成体系,中石油云南石化1 300万吨/年炼油项目建成投产。“十四五”期间,将建设覆盖全省各州、市的天然气支线管道,建成一批原油和成品油储备项目,形成以昆明市为中心的放射状成品油管道输送网络,成品油管道达2 500 km以上,输送能力达3 128万吨/年;将推进石化产业向下游产业链延伸,大力发展功能性化学品、化工新材料等精细化工[2]

    云南省山地面积约占全省总面积的94%左右,地形地貌复杂,道路坡陡弯急,路网安全运行基础薄弱,安全防护设施历史欠账较多,极易发生交通事故并次生突发环境事件。2021年,全省发生道路运输事故1 035起,其中较大事故16起,水上交通事故1起,铁路运输事故9起[3]

    到2025 年,云南省综合交通实体线网总里程将达到36万km,其中高速公路通车里程新增6 000 km、达到1.5万 km,新改建国省道3 000 km,新改建农村公路6万km,铁路营运里程新增1 800 km、达到6 000 km。在建及运营运输机场总数量达到20个。新增及改善航道里程1 000 km、达到5 300 km,新增内河港口泊位60个。预计2021~2035年,公路货运仍占主体地位,货物运输仍然集中在滇中地区,水富港至长江中下游水上运输业务快速增长[4-5]。“十四五”规划的37条国家和地方高速公路项目线路涉及54个集中式饮用水水源保护区,规划的13条铁路项目线路涉及34个集中式饮用水水源地保护区[4-5]

    云南省自然灾害种类多、分布地域广、发生频率高,属地质灾害多发频发区和地震多发省份,地质、地震和洪涝等自然灾害诱发突发环境事件风险隐患大,各类灾害风险交织叠加,不确定因素多。2021年与近5年灾害发生频次均值相比,地质灾害增加126.56%、洪涝灾害增加44.23%。2021年因地震灾害共造成10个州(市)的23个县(市、区)不同程度受灾[6]

    云南省地质构造复杂,地层岩性复杂,近地表岩土体破碎,不稳定岩土体广泛分布,稳定性差。复杂脆弱的地质环境背景条件,遭遇高强度降雨(雪)或长时间连续降雨等极端天气以及强烈地震,导致滑坡、泥石流和崩塌等地质灾害多发频发。“十四五”交通、水利和能源等大规模基础设施建设工程将加剧地质灾害的发生。地处印度洋板块与亚欧板块碰撞带附近,地壳运动比较强烈,沿构造线或大的断裂带,常有强烈地震发生,具有频度高、强度大、震源浅、分布广的特征。全省91.2%的国土面积处于7度以上地震高烈度区,1 500万人居住并在活动断层控制的盆地区域内从事生产活动。7级地震平静时长突破历史记录,“十四五”时期震情形势更加严峻复杂,大量长距离、大跨度油气管线等基础设施邻近或直接处于大震危险源地带[7-8]

    目前,云南省县级及以上城市集中式饮用水水源地共236个,除7个为地下水型饮用水源地外,其他均为湖库型和河流型饮用水水源地;“千吨万人”饮用水水源共330个,湖库型和河流型260个,占比78.8%;乡镇级集中式饮用水源共966个,湖库型和河流型685个,占比70.9%。总体来说,全省湖库型和河流型饮用水水源占比大,环境风险受体敏感性突出。存在交通穿越的县级以上集中式饮用水水源地共69个,因流动源造成突发环境事件的风险较大。“十四五”期间,将新建和续建大、中、小型水库13个[2]

    云南省是“一带一路”建设、长江经济带两大国家发展战略的重要交汇点,涉及水系包括长江(金沙江)水系、珠江(南盘江)水系、元江(红河)水系、澜沧江(湄公河)水系、怒江(萨尔温江)水系和大盈江(伊洛瓦底江)水系。全省跨国境、跨省界河流众多,与缅甸、越南存在跨国境断面,与西藏、四川、贵州和广西省(自治区)存在跨省界断面。16个州(市)中,8个州市涉及跨国境河流,9个州(市)涉及跨省界河流。跨国境断面共22个,涉及红河水系、澜沧江水系、怒江水系和大盈江水系的河流干流及其一、二级支流共20条。跨省界断面共36个,涉及长江水系、珠江水系、怒江水系和大盈江水系的河流干流及其一、二级支流共26条。

    云南省产业结构性、布局性环境风险依旧突出。产业结构以资源型产业为主,大部分产业处于全球产业价值链中低端,企业“乱、散、小”问题突出,发展质量亟待提高。各类化工园区、企业依水而建,沿江、沿河10 km范围内风险企业较多。全省“一废一库一品”企业较多。云南省是长江经济带省(市)中尾矿库数量最多的省份,纳入监管尾矿库588座,涉及16个州(市)。截至2021年12月底,全省危险废物经营许可证持证企业共100家。目前,共有重大突发环境事件风险企业90余家,较大突发环境事件风险企业近400家。“十四五”全省按照“大抓产业、主攻工业”思路,将着力扩大工业投资,实现规模以上工业企业数量翻番,大力发展新材料、生物医药、先进装备制造、绿色食品加工、电子信息、化工、卷烟及配套产业[9]

    突发环境事件的妥善应对,需要结合本省环境风险源和风险受体特点,针对风险源可能造成的环境影响范围和程度,提前做好风险管控和应急准备。云南省生态环境应急工作起步较晚,应对突发环境事件的准备基础十分薄弱,存在明显的短板和不足,体制机制还未完全理顺,风险底数尚不清楚,应急保障极不充分,应急能力亟须提升。

    当前云南省环境应急管理的体制机制与“十四五”环境安全形势发展的要求不相适应,环境应急管理体制不够完善,联动机制不够健全。云南省生态环境厅突发环境事件应急响应预案以及各州(市)突发环境事件应急预案和响应预案更新滞后,不能满足环境应急预案修订时限和环境应急工作高质量发展要求。缺乏生态环境应急管理制度、管理办法和工作规范,环境应急制度化和规范化工作格局尚未形成。与四川、贵州、广西和西藏省(自治区)签订了跨省(区)流域上下游突发水污染事件联防联控机制合作协议,但省内相邻流域、区域的应急协调联动机制普遍未建立,省政府组成机构间生态环境应急协作联动机制尚未建立。

    云南省至今未开展过突发环境事件风险专项调查和评估工作,全省突发环境事件风险底数不清,包括环境风险源基本情况、环境风险受体信息、环境风险防控与应急处置能力。因此,不能通过分析建立环境风险源和敏感受体之间的影响关联,不能识别环境风险源及其风险物质特点,不能明确风险源可能造成的环境影响途径、范围和程度。进一步导致政府和部门突发环境事件应急预案编制的支撑基础不牢,开展风险防控和应急准备工作的针对性不足,无法构建与风险水平相适应的环境应急技术和保障能力。

    由于云南省突发环境事件风险底数不清,尚未建立全省突发环境事件风险源和风险受体分类分级风险管控和隐患排查治理监管机制,未能从源头着手防范化解重特大突发环境事件风险。企业编制的应急预案普遍流于形式、质量不高,针对性、实用性和操作性差,不重视、不执行、不管用的问题突出,事件场景设置不合理,且应急资源种类和数量不足,未与政府预案形成体系。集中式饮用水水源地环境应急预案覆盖不全面,并存在针对性和科学性不足的问题。

    云南省于2021年成立了省生态环境应急调查投诉中心,曲靖市和昭通市建立了专职环境应急机构,其余14个州、市均未组建专职的环境应急机构和队伍,开展生态环境应急工作的人员多数为兼职人员,人员流动频繁,难以满足当前敏感严峻的环境应急形势需要。无论专职还是兼职环境应急人员,均缺乏系统性和规范化培训。未针对云南省突发环境事件风险特征和形势开展相关技术开发和应用研究,难以科学支撑复杂、难度较大突发环境事件的应对和处置,全省环境应急队伍专业能力亟须提升。

    云南省未设立各级环境应急专项资金保障突发环境事件的处置。环境应急装备更新较慢,不能达到应急现场防护和快速监测的要求。应急物资信息库管理有待加强,全省未建设环境应急物资储备库和建立应急物资管理、调运机制。多数企业没有根据自身的环境风险特征储备足量的应急物资。环境应急综合管理和指挥平台开发缓慢,信息化工作有待进一步加强,数据共享机制有待建立,不能有效支撑环境应急管理体系和能力现代化要求。总体来说,一旦遭遇重特大突发环境事件,将面临不能充分保障突发环境事件处置的问题。

    李昌林等[10]从国家层面提出突发环境事件应急体系及完善建议,着重强调法律法规的衔接性、应急预案编制技术规范、多元主体参与机制、应急技术研发、应急人才培养和应急物资储备规划。朱文英等[11]也从国家层面提出环境应急管理制度体系发展建议,侧重完善事前防范和管理标准体系、提高事中处置规范化水平、增强事后赔偿和修复规范化水平。云南省生态环境应急工作在发展阶段和发展水平上均同国家环境应急整体发展状况存在较大差距,需立足云南省生态环境应急现状及存在的主要问题,基于突发环境事件风险特征和“十四五”生态环境应急面临的形势,按照“强体系、摸底数、防风险、提能力、促保障”的总体工作思路,基于可推动实现的目标,全面贯彻分类分级的理念和主线,“十四五”期间以突发水环境事件为重心,突出重点行业、重点企业、重点环节、重点风险物质,针对性做好风险防控和应急准备,着力防范和应对重特大突发环境事件发生,推进生态环境应急体系与能力现代化。

    加快修订云南省生态环境厅突发环境事件应急响应预案,理顺厅内应急响应程序和机制,明确厅内各部门分级应对突发环境事件的职能职责。形成以风险评估为基础编制政府及其部门突发环境事件应急预案的导向,推进州(市)政府及生态环境部门按期修订突发环境事件应急预案及应急响应预案。根据环境应急重点工作需要,制定出台一系列管理制度、管理办法和工作规范,提高生态环境应急工作制度化和规范化水平。加强区域、流域和部门间协调协作,推进建立高效顺畅的相邻区域、流域应急协调联动机制,推动建立与应急管理、消防救援、水利、能源、交通运输、自然资源和地震等部门的联动协作机制,尤其要建立与应急管理、消防救援、交通运输和水利部门间的信息共享机制。

    对16个州(市)开展区域突发环境事件风险评估,全面掌握全省突发环境事件风险底数,为提升政府及其部门应急预案的针对性提供支撑,为实现分类分级、重点精准风险管控奠定基础,针对性做好应急准备,构建与风险水平相适应的环境应急技术和保障能力。同时,将风险评估成果信息化,集成在环境应急管理和指挥系统平台,及时根据环境风险源和风险受体变化情况实时更新,实现突发环境事件风险动态管理目标,提高生态环境应急管理精准化和信息化水平。积极推动流域突发环境风险评估试点工作。

    提升突发环境事件风险管控水平,健全环境风险防范化解机制,突出重点行业和企业,坚持从源头上防范化解重特大突发环境事件风险。在掌握风险底数和实现动态更新的基础上,从企业和流域层面系统构建多层级的突发环境事件风险防控体系,推进风险管控能力现代化。建立企业突发环境事件风险分级管控和隐患排查治理双重防控机制。提升应急预案规范化和精准化管理水平,建立企业应急预案核查管理技术要点和方法体系,开展企业突发环境事件应急预案抽查复核。推动县级及以上集中式饮用水水源地环境应急预案全覆盖。全面推广应用“以空间换时间”的“南阳实践”,以“南阳实践”为抓手防控流域突发水污染事件,实现重点河流“一河一策一图”全覆盖。

    在目前我国应急管理体系为政府主导的治理模式下,着力推动基层生态环境应急机构和队伍建设,推动建立州(市)、县(区)环境应急专职机构。制定环境应急人员系统性、长期性培训计划,提高应对突发环境事件的专业素质和能力,重点强化基层应急人员信息报告和先期处置能力。重视应急技术深化应用,加强与环境应急技术研究单位的交流合作,结合全省产业结构、运输结构、能源结构布局和重点行业发展水平,根据风险评估成果针对性建立环境应急处置技术库并进一步研究提高应用水平,以支撑现场应急处置。完善环境应急监测和应急处置专家库。推动依托企业和社会组织,组建突发环境事故专业救援队伍。

    推动在省和州(市)层面设立生态环境应急专项资金,确保环境应急资金保障。加强环境应急监测能力建设,探索建立企业、市场、政府多方参与的应急监测保障机制。在继续做好环境应急物资信息库建设和管理的基础上,根据区域行业特点、风险源分布和风险物质类型,研究细化应急物资种类、数量及其储备布局、模式和更新周期,建立实物储备、合同储备和生产储备相结合的应急物资储备模式,推动建设常用应急物资储备库。加快建设环境应急综合管理和指挥平台,初步实现环境应急管理和指挥“一张图”。加强环境应急信息化建设,首要以信息化提高环境风险防控精准化及动态管理水平、促进环境应急物资管理、储备和调运等保障能力。

  • 图 1  采样点分布概况

    Figure 1.  Distribution of sampling points

    图 2  不同季节玻璃表面PAHs质量浓度分布

    Figure 2.  Concentration distribution of PAHs on glass surface in different seasons

    图 3  不同季节玻璃表面PAHs组分特征

    Figure 3.  Composition characteristics of PAHs on glass surface in different seasons

    图 4  不同季节玻璃表面BghiP和T-PAHs比值

    Figure 4.  Ratio of BghiP and T-PAHs on glass surface in different seasons

    图 5  不同季节玻璃表面PAHs特征比值

    Figure 5.  Characteristic ratio of PAHs on glass surface in different seasons

    表 1  公园绿地玻璃表面PAHs质量浓度水平(ng·m−2

    Table 1.  Mass concentration level of PAHs on the glass surface of the park green space(ng·m−2

    PAHsYPLXHCPTSSJLJSSWJ
    Na20.4—113.09.1—50.631.5—80.811.0—40.351.6—147.414.9—75.512.4—71.025.3—92.0
    Acy0.0—23.70.0—25.20.0—25.32.3—23.10.0—48.60.0—67.01.5—21.00.0—23.4
    Ace2.0—38.22.8—20.61.9—43.92.8—46.02.7—42.71.5—72.71.8—40.54.4—52.6
    Fluo20.4—35.16.3—26.19.8—29.15.3—28.023.4—49.95.2—63.65.3—19.211.9—28.8
    Phe71.3—121.956.3—78.956.7—116.827.2—118.2106.0—152.911.6—176.531.6—74.1107.7—128.9
    An2.5—12.51.4—7.92.5—10.82.5—10.111.3—22.01.5—29.92.5—7.98.8—12.9
    Fl48.1—147.718.4—35.928.2—43.823.2—37.293.4—199.413.3—98.741.7—55.425.0—141.5
    Pyr36.0—111.912.1—24.131.0—36.917.7—39.161.3—163.710.7—74.47.7—46.731.4—103.3
    BaA9.1—44.62.4—17.55.8—20.05.0—13.327.2—82.53.4—49.511.7—20.77.6—32.8
    Chry36.0—98.810.0—26.520.6—31.916.1—28.554.2—109.86.5—84.733.7—43.024.3—80.5
    B[b+k]F17.1—63.33.7—25.39.0—26.68.7—20.346.0—133.57.5—202.122.3—33.910.3—76.3
    BaP4.8—47.92.0—10.03.2—11.33.6—7.422.2—136.03.0—88.312.6—19.04.8—42.8
    InP0.0—32.82.1—13.33.9—9.83.6—10.025.3—63.82.7—266.111.4—16.96.6—38.1
    DahA0.0—9.91.2—5.71.2—5.01.2—5.85.2—18.10.6—91.12.9—5.64.3—12.2
    BghiP0.0—41.42.8—15.23.3—10.95.0—11.532.2—70.53.4—402.59.7—27.28.6—54.2
    T-PAHs298.7—731.5131.9—332.7223.9—470.3125.4—431.0662.3—1066.783.6—1689.6221.1—431.8388.1—662.4
    PAHsYPLXHCPTSSJLJSSWJ
    Na20.4—113.09.1—50.631.5—80.811.0—40.351.6—147.414.9—75.512.4—71.025.3—92.0
    Acy0.0—23.70.0—25.20.0—25.32.3—23.10.0—48.60.0—67.01.5—21.00.0—23.4
    Ace2.0—38.22.8—20.61.9—43.92.8—46.02.7—42.71.5—72.71.8—40.54.4—52.6
    Fluo20.4—35.16.3—26.19.8—29.15.3—28.023.4—49.95.2—63.65.3—19.211.9—28.8
    Phe71.3—121.956.3—78.956.7—116.827.2—118.2106.0—152.911.6—176.531.6—74.1107.7—128.9
    An2.5—12.51.4—7.92.5—10.82.5—10.111.3—22.01.5—29.92.5—7.98.8—12.9
    Fl48.1—147.718.4—35.928.2—43.823.2—37.293.4—199.413.3—98.741.7—55.425.0—141.5
    Pyr36.0—111.912.1—24.131.0—36.917.7—39.161.3—163.710.7—74.47.7—46.731.4—103.3
    BaA9.1—44.62.4—17.55.8—20.05.0—13.327.2—82.53.4—49.511.7—20.77.6—32.8
    Chry36.0—98.810.0—26.520.6—31.916.1—28.554.2—109.86.5—84.733.7—43.024.3—80.5
    B[b+k]F17.1—63.33.7—25.39.0—26.68.7—20.346.0—133.57.5—202.122.3—33.910.3—76.3
    BaP4.8—47.92.0—10.03.2—11.33.6—7.422.2—136.03.0—88.312.6—19.04.8—42.8
    InP0.0—32.82.1—13.33.9—9.83.6—10.025.3—63.82.7—266.111.4—16.96.6—38.1
    DahA0.0—9.91.2—5.71.2—5.01.2—5.85.2—18.10.6—91.12.9—5.64.3—12.2
    BghiP0.0—41.42.8—15.23.3—10.95.0—11.532.2—70.53.4—402.59.7—27.28.6—54.2
    T-PAHs298.7—731.5131.9—332.7223.9—470.3125.4—431.0662.3—1066.783.6—1689.6221.1—431.8388.1—662.4
    下载: 导出CSV
  • [1] 许世远. 上海城市自然地理图集[M]. 北京: 中国地图出版社. 2004.

    XU S Y. Shanghai urban physical geography atlas[M]. Beijing: China map publishing house. 2004(in Chinese).

    [2] 孔锋, 王一飞, 方建, 等. 中国夏季极端降水空间格局及其对城市化的响应(1961—2010) [J]. 长江流域资源与环境, 2018, 27(5): 996-1010. doi: 10.11870/cjlyzyyhj201805007

    KONG F, WANG Y F, FANG J, et al. Spatial pattern of summer extreme precipitation and its response to urbanization in China(1961-2010) [J]. Resources and Environment in the Yangtze Basin, 2018, 27(5): 996-1010(in Chinese). doi: 10.11870/cjlyzyyhj201805007

    [3] 刘家宏, 骆卓然, 张永祥, 等. 城市化对河南省极端降水空间分布的影响 [J]. 水资源保护, 2022, 38(1): 100-105. doi: 10.3880/j.issn.1004-6933.2022.01.013

    LIU J H, LUO Z R, ZHANG Y X, et al. Influence of urbanization on spatial distribution of extreme precipitation in Henan Province [J]. Water Resources Protection, 2022, 38(1): 100-105(in Chinese). doi: 10.3880/j.issn.1004-6933.2022.01.013

    [4] WANG Q, LIU M, YU Y P, et al. Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai City, China [J]. Environmental Pollution, 2016, 218: 118-128. doi: 10.1016/j.envpol.2016.08.037
    [5] YIN S, TAN H X, HUI N, et al. Polycyclic aromatic hydrocarbons in leaves of Cinnamomum camphora along the urban-rural gradient of a megacity: Distribution varies in concentration and potential toxicity [J]. Science of the Total Environment, 2020, 732: 139328. doi: 10.1016/j.scitotenv.2020.139328
    [6] 冯精兰, 刘书卉, 申君慧, 等. 新乡市道路灰尘中PAHs的污染特征和来源解析 [J]. 环境化学, 2013, 32(4): 630-639. doi: 10.7524/j.issn.0254-6108.2013.04.014

    FENG J L, LIU S H, SHEN J H, et al. Pollution characteristics and source appointment of polycyclic aromatic hydrocarbons(PAHs) in road dust from Xinxiang [J]. Environmental Chemistry, 2013, 32(4): 630-639(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.04.014

    [7] 王建龙, 夏旭, 冯伟. 基于场降雨的北京某高架桥雨水径流中多环芳烃污染特征 [J]. 环境化学, 2020, 39(7): 1832-1838. doi: 10.7524/j.issn.0254-6108.2019051004

    WANG J L, XIA X, FENG W. Pollution characteristics of polycyclic aromatic hydrocarbons in urban viaduct stormwater runoff based on event rainfall process [J]. Environmental Chemistry, 2020, 39(7): 1832-1838(in Chinese). doi: 10.7524/j.issn.0254-6108.2019051004

    [8] 王喆, 卢丽, 裴建国. 城郊型地下河表层沉积物多环芳烃来源分析与生态风险评价 [J]. 环境化学, 2020, 39(10): 2733-2741. doi: 10.7524/j.issn.0254-6108.2019071206

    WANG Z, LU L, PEI J G. Source analysis and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from suburban type underground river [J]. Environmental Chemistry, 2020, 39(10): 2733-2741(in Chinese). doi: 10.7524/j.issn.0254-6108.2019071206

    [9] GUSTAFSON K E, DICKHUT R M. Particle/gas concentrations and distributions of PAHs in the atmosphere of southern Chesapeake Bay [J]. Environmental Science & Technology, 1997, 31(1): 140-147.
    [10] DIAMOND M L, GINGRICH S E, FERTUCK K, et al. Evidence for organic film on an impervious urban surface: Characterization and potential teratogenic effects [J]. Environmental Science & Technology, 2000, 34(14): 2900-2908.
    [11] DIAMOND M L, PRIEMER D A, LAW N L. Developing a multimedia model of chemical dynamics in an urban area [J]. Chemosphere, 2001, 44(7): 1655-1667. doi: 10.1016/S0045-6535(00)00509-9
    [12] YU Y P, YANG Y, LIU M, et al. PAHs in organic film on glass window surfaces from central Shanghai, China: Distribution, sources and risk assessment [J]. Environmental Geochemistry and Health, 2014, 36(4): 665-675. doi: 10.1007/s10653-013-9588-x
    [13] LAW N L, DIAMOND M L. The role of organic films and the effect on hydrophobic organic compounds in urban areas: An hypothesis [J]. Chemosphere, 1998, 36(12): 2607-2620. doi: 10.1016/S0045-6535(97)10222-3
    [14] HUANG Y P, SUN X, LIU M, et al. A multimedia fugacity model to estimate the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in a largely urbanized area, Shanghai, China [J]. Chemosphere, 2019, 217: 298-307. doi: 10.1016/j.chemosphere.2018.10.172
    [15] GINGRICH S E, DIAMOND M L, STERN G A, et al. Atmospherically derived organic surface films along an urban-rural gradient [J]. Environmental Science & Technology, 2001, 35(20): 4031-4037.
    [16] 于英鹏, 杨毅, 刘敏, 等. 上海工业区玻璃表面多环芳烃分布特征与溯源 [J]. 中国环境科学, 2014, 34(1): 219-224.

    YU Y P, YANG Y, LIU M, et al. Distribution and sources of polycyclic aromatic hydrocarbons(PAHs) on glass surface of industrial zone in Shanghai [J]. China Environmental Science, 2014, 34(1): 219-224(in Chinese).

    [17] TSAI P J, SHIH T S, CHEN H L, et al. Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers [J]. Atmospheric Environment, 2004, 38(2): 333-343. doi: 10.1016/j.atmosenv.2003.08.038
    [18] PAN S H, LI J, LIN T, et al. Polycyclic aromatic hydrocarbons on indoor/outdoor glass window surfaces in Guangzhou and Hongkong, South China [J]. Environmental Pollution, 2012, 169: 190-195. doi: 10.1016/j.envpol.2012.03.015
    [19] LIU Q T, CHEN R, MCCARRY B E, et al. Characterization of polar organic compounds in the organic film on indoor and outdoor glass windows [J]. Environmental Science & Technology, 2003, 37(11): 2340-2349.
    [20] BUTT C M, DIAMOND M L, TRUONG J, et al. Semivolatile organic compounds in window films from lower Manhattan after the September 11th World Trade Center attacks [J]. Environmental Science & Technology, 2004, 38(13): 3514-3524.
    [21] LIU M, CHENG S B, OU D N, et al. Characterization, identification of road dust PAHs in central Shanghai areas, China [J]. Atmospheric Environment, 2007, 41(38): 8785-8795. doi: 10.1016/j.atmosenv.2007.07.059
    [22] ALAM M S, DELGADO-SABORIT J M, STARK C, et al. Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories [J]. Atmospheric Chemistry and Physics, 2014, 14(5): 2467-2477. doi: 10.5194/acp-14-2467-2014
    [23] 朱利中, 王静, 杜烨, 许青青. 汽车尾气中多环芳烃(PAHs)成分谱图研究 [J]. 环境科学, 2003, 24(3): 26-29. doi: 10.3321/j.issn:0250-3301.2003.03.005

    ZHU L Z, WANG J, DU Y, et al. Research on PAHs fingerprints of vehicle discharges [J]. Chinese Journal of Environmental Science, 2003, 24(3): 26-29(in Chinese). doi: 10.3321/j.issn:0250-3301.2003.03.005

    [24] 朱利中, 王静, 江斌焕. 厨房空气中PAHs污染特征及来源初探 [J]. 中国环境科学, 2002, 22(2): 142-145. doi: 10.3321/j.issn:1000-6923.2002.02.011

    ZHU L Z, WANG J, JIANG B H. Prelimilary exploration of features and sources of PAHs pollution in air of kitchen [J]. China Environmental Science, 2002, 22(2): 142-145(in Chinese). doi: 10.3321/j.issn:1000-6923.2002.02.011

    [25] 朱先磊, 刘维立, 卢妍妍, 等. 民用燃煤、焦化厂和石油沥青工业多环芳烃源成分谱的比较研究 [J]. 环境科学学报, 2002, 22(2): 199-203. doi: 10.3321/j.issn:0253-2468.2002.02.014

    ZHU X L, LIU W L, LU Y Y, et al. A Comparison of PAHs source profiles of domestic coal combustion, coke plant and petroleum asphalt industry [J]. Acta Scientiae Circumstantiae, 2002, 22(2): 199-203(in Chinese). doi: 10.3321/j.issn:0253-2468.2002.02.014

    [26] 于英鹏, 刘敏. 上海市多环芳烃潜在污染源成分谱特征初探 [J]. 科学技术与工程, 2017, 17(11): 131-136.

    YU Y P, LIU M. Preliminary study of the component spectrum of polycyclic aromatic hydrocarbons(PAHs) in Shanghai [J]. Science Technology and Engineering, 2017, 17(11): 131-136(in Chinese).

    [27] YUNKER M B, MACDONALD R W, VINGARZAN R, et al. PAHs in the Fraser River Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5
    [28] YUNKER M B, SNOWDON L R, MACDONALD R W, et al. Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents Seas [J]. Environmental Science & Technology, 1996, 30(4): 1310-1320.
    [29] 蒋煜峰. 上海地区土壤中持久性有机污染物污染特征、分布及来源初步研究[D]. 上海: 上海大学, 2009.

    JIANG Y F. Preliminary study on composition, distribution and source identification of persistent organic pollutants in soil of Shanghai[D]. Shanghai: Shanghai University, 2009(in Chinese).

    [30] 刘营, 刘敏, 杨毅, 等. 上海市中心城区樟树叶片中多环芳烃的分布及来源辨析 [J]. 中国环境科学, 2014, 34(7): 1855-1862.

    LIU Y, LIU M, YANG Y, et al. Distribution and source apportionment of polycyclic aromatic hydrocarbons in Cinnamomum Camphora leaves in Shanghai urban area [J]. China Environmental Science, 2014, 34(7): 1855-1862(in Chinese).

  • 加载中
图( 5) 表( 1)
计量
  • 文章访问数:  1292
  • HTML全文浏览数:  1292
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-05
  • 录用日期:  2022-09-21
  • 刊出日期:  2023-09-27
于英鹏, 李传武, 朱天明, 梁峰, 刘敏. 上海市公园绿地玻璃表面多环芳烃污染特征及源解析[J]. 环境化学, 2023, 42(9): 2969-2977. doi: 10.7524/j.issn.0254-6108.2022070504
引用本文: 于英鹏, 李传武, 朱天明, 梁峰, 刘敏. 上海市公园绿地玻璃表面多环芳烃污染特征及源解析[J]. 环境化学, 2023, 42(9): 2969-2977. doi: 10.7524/j.issn.0254-6108.2022070504
YU Yingpeng, LI Chuanwu, ZHU Tianming, LIANG Feng, LIU Min. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons on the glass surface of park green space in Shanghai[J]. Environmental Chemistry, 2023, 42(9): 2969-2977. doi: 10.7524/j.issn.0254-6108.2022070504
Citation: YU Yingpeng, LI Chuanwu, ZHU Tianming, LIANG Feng, LIU Min. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons on the glass surface of park green space in Shanghai[J]. Environmental Chemistry, 2023, 42(9): 2969-2977. doi: 10.7524/j.issn.0254-6108.2022070504

上海市公园绿地玻璃表面多环芳烃污染特征及源解析

    通讯作者: E-mail:mliu@geo.ecnu.edu.cn
  • 1. 无锡职业技术学院旅游文化研究所,无锡,214121
  • 2. 盐城师范学院苏北农业农村现代化研究院,盐城,224007
  • 3. 盐城师范学院盐城城乡融合发展研究院,盐城,224007
  • 4. 地理信息科学教育部重点实验室,上海,200241
  • 5. 华东师范大学地理科学学院,上海,200241
  • 6. 自然资源部超大城市自然资源时空大数据分析应用重点实验室,上海,200241
基金项目:
国家自然科学基金(41730646),江苏高校哲学社会科学研究重点项目(2018SJZDI080)和江苏省高等学校自然科学研究面上项目(20KJB170030)资助.

摘要: 为研究上海市公园绿地玻璃表面多环芳烃(PAHs)的污染特征及污染源,利用气相色谱-质谱联用仪(GC-MS)对16种优控PAHs质量浓度进行了测定,对玻璃表面PAHs质量浓度的季节分布,组成特征和潜在污染源进行了分析. 此外,利用毒性当量因子(TEFs)对玻璃表面PAHs进行了毒性当量分析. 结果表明,玻璃表面PAHs面积归一化质量浓度在83.6—1689.6 ng·m−2之间,呈现夏季(599.7 ng·m−2)>秋季(533.1 ng·m−2)>春季(464.2 ng·m−2)>冬季(351.4 ng·m−2). PAHs组成特征季节差异明显,4环PAHs在春季(43%)和冬季(42%)的占比最高;而2+3环PAHs在秋季(57%)和夏季(46%)占比最高. BghiP与T-PAHs强相关性说明汽车尾气是玻璃表面PAHs的主要贡献源;异构体比值表明不同季节玻璃表面PAHs主要污染源相对稳定,即为汽车尾气和扬尘源(降尘和裸露表土). 质量归一化处理后的7种致癌性PAHs的质量浓度范围为58.3—1311.8 ng·g−1,TEQ的浓度在夏季(466.6 ng·g−1)>春季(361.0 ng·g−1)>秋季(262.9 ng·g−1)>冬季(214.6 ng·g−1). BaP、DahA和B[b+k]F是主要的致癌单体PAH,共计占TEQ浓度的80%—91%.

English Abstract

  • 城市具有环境界面多样、污染物迁移归趋过程复杂等特征,正面对着全球变暖和区域环境恶化的严峻挑战. 城市土地覆被正快速被人工不透水面(建筑屋顶、路面等)所取代,形成了“城市第二自然地理格局”[1]. 不透水面改变了城市水文、能量分布和非点源污染负载,是城市环境系统最重要的环境介质之一[2-3]. 多环芳烃(polycyclic aromatic hydrocarbons, PAHs)广泛分布于城市环境系统中,其具有的“致癌、致畸、致突变”效应和持续输入特征,对城市生态和居民健康构成了极大的威胁. 目前,关于城市环境系统中PAHs的研究多聚焦在大气气溶胶[4]、城市植被[5]、道路灰尘[6]、水体[7]和降水[8]等环境介质,并已检测出较高质量浓度水平的PAHs富集.

    Gustafson等发现城市大气中半挥发性有机污染物质量浓度随温度的升高呈指数增加,认为污染物可能来源于被污染的路面[9]. Diamond等发现了典型不透水面(玻璃)表面有机膜存在的证据,认为玻璃可以吸附大气中半挥发性有机污染物[10]. 随后,Diamond等利用多介质逸度模型对城市环境系统中半挥发性有机污染物的迁移归趋过程进行了模拟,发现不透水面的存在增加了污染物在环境中的停留时间[11],认为不透水面是PAHs主要的“汇”[12],而汽车尾气和本地短距离传输的污染物是不透水面PAHs的主要来源[13]. 此外,不透水面的存在增强了PAHs在城市环境系统中的可迁移性,通过大气-不透水面-水体系统增加了水体中PAHs的含量,造成地表水的污染[14]. 玻璃表面已检测出较高质量浓度的有机污染物,如美国“911”恐怖袭击现场玻璃表面PAHs质量浓度高达154 μg·m-2[15],上海市金山工业区玻璃表面PAHs质量浓度达87.8 μg·m-2[16]. 当环境条件改变时,玻璃表面富集的PAHs又会释放到室内空气中,居民日常生活和工作与玻璃直接接触也较频繁,这样不可避免的暴露于PAHs风险之中. 基于此,本研究选择上海市公园绿地玻璃为研究介质,了解玻璃表面PAHs富集水平和组分特征,进一步对污染源进行分析,以期为城市多介质PAHs研究提供理论和数据支撑.

    • 本研究共选择了8个代表性公园绿地,其中杨浦公园(YP)、鲁迅公园(LX)、华漕公园(HC)和普陀体育公园(PTS)位于上海市中心城区,主要满足于附近居民日常休闲需要;世纪公园(SJ)靠近陆家嘴商务区,为4A级旅游景区,汽车流量大;临江公园(LJ)和吴泾公园(WJ)分别位于宝山工业区和吴泾工业区附近,为附近居民日常休闲活动场所;佘山森林公园(SS)位于上海市松江区,为远郊区旅游景区,工业排放和汽车尾气对其影响较小(图1). 考虑降雨时采样点附近草本植物叶片喷溅对玻璃表面PAHs累积的影响和采样的方便性,选择不受降雨冲刷影响且高于地面约2 m左右的玻璃作为采样对象. 根据玻璃大小确定采样面积,保证采样区域距玻璃边框10 cm以上,以免玻璃边框密封材料污染样品. 由于采样玻璃表面PAHs的累积时间不确定,用低尘擦拭纸沾取二氯甲烷将玻璃擦拭干净,然后每隔3个月擦拭玻璃表面采集样品1次,共采集4次,分别代表春季、夏季、秋季和冬季. 采样时,用已净化的低尘擦拭纸(Kimwipes,购于美国kimberly clark公司)沾取二氯甲烷定面积擦拭玻璃表面,采集好的样品用铝箔包好装于自封袋中. 每个采样点采集2个样品,共计64个. 为检验大气中气相PAHs对采样过程的影响,同时采集野外空白样品,用镊子夹取低尘擦拭纸沾取二氯甲烷后在空气中挥动至风干后用铝箔包好,所有样品带回实验室-20℃保存待分析.

    • 样品冷冻风干后称重,加适量铜粉和无水硫酸钠一并填装于滤纸槽中,加入氘代回收率内标物(购于德国Dr. Ehrenstorfer公司),用丙酮和二氯甲烷混合溶剂(120 mL,体积比1:1)在索式抽提器中以4次·h−1的速率连续回流抽提20 h,将抽提液旋转蒸发至约1 mL,用25 mL正己烷进行溶剂置换后再蒸发至1 mL,过硅胶-氧化铝层析柱去除杂质(体积比2∶1,湿法填装),用15 mL正己烷和70 mL混合溶剂(二氯甲烷和正己烷体积比为3∶7)分别淋洗出烷烃和芳烃组分,含芳烃组分浓缩定容至1mL上机分析. 利用气相色谱-质谱联用仪(Agilent, 7890A/5975C, 美国Agilent公司)分析16种优控PAHs(萘(Na)、苊(Acy)、二氢苊(Ace)、芴(Fluo)、菲(Phe)、蒽(An)、荧蒽(Fl)、芘(Pyr)、苯并[a]蒽(BaA)、䓛(Chry)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[a]芘(BaP)、茚并[1,2,3-cd]芘(InP)、二苯并[a,h]蒽(DahA)、苯并[ghi]苝(BghiP)). 色谱柱为DB-5聚硅氧烷聚合物色谱柱(30 m×0.25 mm×0.25 μm). 升温程序为色谱柱在55 ℃维持2 min,然后以20 ℃·min−1速率升温到280 ℃,以10 ℃·min−1 速率升温到310 ℃,维持5 min. 载气为高纯He,流速1 mL·min−1. 扫描模式:SIM模式.

    • 部分空白样品检出Na和Phe(含量低于样品实际含量的3%),方法空白实验无PAHs被检出,16种PAHs加标空白回收率为70%—110%. 氘代内标物回收率为:萘-d8:79.8%—95.1%,二氢苊-d10:79.85%—95.73%,菲-d10:74.83%—98.89%,䓛-d12:77.8%—106.2%,苝-d12:80.1%—101.65%.

    • 玻璃表面PAHs质量浓度有两种表达方式:面积归一化和质量归一化. 计算公式如下:(1)面积归一化质量浓度(ANMC)=C/A(单位为ng·m−2C为每个采样点2个样品的平均质量浓度,A为采样面积,采样时用刻度尺标出采样范围,一般为30 cm×30 cm);(2)质量归一化质量浓度(MNMC)=C/M(单位为ng·g−1C为每个采样点2个样品的平均质量浓度,M为采样前后低尘擦拭纸质量差)[15]. 应用毒性当量因子(TEFs)计算PAHs的毒性当量(TEQ),计算公式如下:TEQ=(Ci×TEFs),Ci为单体PAH的浓度,TEFs为毒性当量因子[17]. 运用Freehand,Origin 7.5软件进行绘图.

    • 公园绿地玻璃表面PAHs面积归一化质量浓度如表1所示,16种PAHs在春季和夏季的检出率为100%;YP采样点InP、DahA和BghiP,SJ和LJ采样点Acy在秋季低于检出限,而YP、LX、HC、LJ和WJ采样点Acy在冬季低于检出限. 从季节平均质量浓度看,玻璃表面Phe最高(66.9—111.6 ng·m−2),不同季节质量浓度占比在14%—22%之间,其次为Fl(质量浓度在51.3—78.8 ng·m−2之间,占比为9%—17%)和Pyr(质量浓度在32.4—60.7 ng·m−2之间,占比为5%—14%),而DahA最低(质量浓度在2.8—16.4 ng·m−2之间,占比为1%—3%),说明玻璃表面更易吸附大气中的中低环数PAHs,使得高环PAHs的质量浓度较低. 这一结果与上海市大气干湿沉降样品中PAHs富集特征相似,Phe、Fl和Pyr的占比最高[4].

      公园绿地玻璃表面PAHs的质量浓度范围在83.6—1689.6 ng·m−2之间(表1). 玻璃表面PAHs质量浓度在夏季最高(599.7 ng·m−2),其次秋季(533.1 ng·m−2)和春季(464.2 ng·m−2),冬季最低(351.4 ng·m−2). 在夏季,高温使得中低环数PAHs从被污染的土壤、植物叶片和路面等介质挥发到大气中,促进了玻璃表面有机膜的冷凝过程[9]. 与其它研究相比,远低于广州城区(1290 ng·m−2[18]、上海市交通区(4007.9 ng·m−2)和商业区(3655.6 ng·m−2[12]、巴尔的摩城区(5408 ng·m−2[19]、多伦多城区(6100 ng·m−2[15]和911恐怖袭击后的纽约世贸中心废墟附近玻璃表面PAHs质量浓度(38744 ng·m−2[20],但高于多伦多农村(210 ng·m−2[15]. 具体来看(图2),紧邻上海陆家嘴金融区的SJ玻璃表面PAHs季节平均质量浓度最高(1107.6 ng·m−2),SJ采样点附近交通流量大,PAHs更多来源于交通排放[21];其次为WJ(546.9 ng·m−2),该采样点位于黄浦江边,北面为吴泾火电厂,往来船舶尾气和火电厂燃煤是PAHs的主要来源.

      由于气-固分配系数的差异,大气中低环数PAHs以气相形式存在,而高环数PAHs以颗粒相形式存在[22]. 由图3可知,公园绿地玻璃表面PAHs组成特征季节差异明显,4环PAHs的质量浓度平均占比在春季(43%)和冬季(42%)最高;随着季节转换,2+3环PAHs质量浓度平均占比在秋季(57%)和夏季(46%)增加明显,说明大气中PAHs存在形式季节差异明显,进一步影响玻璃表面PAHs吸附过程,这种富集模式表征了城市大气颗粒物中PAHs的老化[15];而5+6环PAHs质量浓度平均占比在夏季(24%)>春季(22%)>秋季(15%)=冬季(15%). 总体上,玻璃表面以2+3环和4环PAHs为主,这与Toronto、香港和广州玻璃表面PAHs组成相似[15,18]. 从单体PAH来看,春季和冬季以Phe、Fl和Pyr为主,夏季以Phe和BghiP为主,而秋季以Phe、Na和Fl为主.

    • 汽车尾气、工业排放和居民生活排放是城市环境系统中PAHs的主要来源[23~25]. 上海市路网稠密、汽车保有量大,汽车尾气对环境中PAHs的贡献不容忽视,而汽车尾气中气相有机物又是玻璃表面有机膜形成的主要物质[13]. 上海地区源成分谱研究表明,柴油车(卡车和客车)尾气中Na、Phe和Fl占比最高,而汽油车尾气中BaP、BghiP和Pyr占比最高[26]. 朱利中等研究认为,BghiP是汽油引擎或柴油内燃机的主要排放物[23],因此,BghiP与T-PAHs之间相关性常被作为城市PAHs的判源指标. 如图4所示,不同季节玻璃表面BghiP与T-PAHs之间均存在很强的正相关关系,春季的相关系数(r=0.99806)>夏季(r=0.97443)>冬季(r=0.90834)>秋季(r=0.889),说明汽车尾气是公园绿地玻璃表面PAHs的主要贡献源.

      PAHs同分异构体的热稳定性不同,可利用同分异构体比值判断PAHs来源类型[27]. An/(Phe+An)和Fl/(Fl+Pyr)、InP/(InP+BghiP)和BaA/(BaA+Chry)异构体比值常被用作环境介质中PAHs的判源指标[28]. 不同研究区域环境参数差异较大,使得PAHs在迁移归趋过程中的降解转化不同,所以利用其它研究区异构体比值得出的判源结果可能存在偏差. 本研究利用上海市PAHs污染源成分谱数据对玻璃表面PAHs进行源解析研究[26]. 如图5所示,从An/(Phe+An)和Fl/(Fl+Pyr)异构体比值来看,春季PAHs异构体比值与柴油车,降尘、裸露表土和油烟中PAHs成分谱相近,夏季PAHs异构体比值与柴油车、裸露表土和烧烤PAHs成分谱相似,而秋季和冬季PAHs异构体比值主要与裸露表土和降尘PAHs成分谱相似,可以看出不同季节玻璃表面PAHs污染源存在差异,但主要污染源相对稳定,即为汽车尾气和扬尘源(降尘和裸露表土),而夏季户外烧烤对PAHs有一定的贡献. 从InP/(InP+BghiP)和BaA/(BaA+Chry)异构体比值来看,春季PAHs异构体比值与秸秆燃烧物、草木灰、裸露表土和工业区路面尘、降尘相似,夏季主要与油烟、汽车修理厂表土和草木灰相似,秋季和冬季与秸秆燃烧物和裸露表土相似,说明玻璃表面PAHs在春季、秋季和冬季可能更多来源于扬尘源(裸露表土)和秸秆焚烧,油烟和修理厂表土挥发出的气相PAHs在夏季的贡献较为明显. 相较于其它环境介质(土壤、水体和大气颗粒物等),吸附在玻璃表面的PAHs在光照和气温发生变化时更易发生光降解[12],所以玻璃表面PAHs的溯源还需结合其它判源方法进一步研究.

    • 在城市环境中,PAHs以气相或颗粒相吸附在玻璃表面,居民日常生活不可避免的暴露于PAHs风险之中,所以开展玻璃表面PAHs的毒性当量评估非常必要. BaP毒性当量浓度(toxic equivalent quantity, TEQ)已被广泛地应用于评估PAHs的潜在风险,通过毒性当量因子(toxic equivalence factors, TEFs)将不同毒性的PAHs质量浓度转化为生物毒理学数据,进而了解PAHs的潜在风险[17]. 有关玻璃表面PAHs研究开展较晚且资料较少,对玻璃表面PAHs进行质量归一化处理后的7种致癌性PAHs(BaA、Chry、B[b]F、B[k]F、BaP、InP和DahA)的质量浓度范围为58.3—1311.8 ng·g−1. 计算后的TEQ浓度为夏季(466.6 ng·g−1)>春季(361.0 ng·g−1)>秋季(262.9 ng·g−1)>冬季(214.6 ng·g−1),与上海市文教区(490 ng·g−1)和商业区(261 ng·g−1)玻璃表面TEQ浓度相当[12];但远低于上海市PM2.5中PAHs的TEQ浓度[4];也低于上海市路边土壤中TEQ浓度(892 ng·g−1),与绿化带(401 ng·g−1)、商业区(341 ng·g−1)和公园(324 ng·g−1)土壤中TEQ浓度相当[29];高于上海市不同功能区香樟树叶片中PAHs的TEQ浓度值[30]. BaP、DahA和B[b+k]F是玻璃表面主要的致癌单体PAH,共计占TEQ浓度的80%—91%,其中BaP的TEQ浓度占比高达50%—62%.

    • (1)玻璃表面PAHs质量浓度在83.6—1689.6 ng·m−2之间. 在夏季最高(599.7 ng·m−2),冬季最低(351.4 ng·m−2). SJ玻璃表面PAHs平均质量浓度最高(1107.6 ng·m−2),可能受控于附近繁忙的交通排放. 单体PAH中Phe的质量浓度最高(66.9—111.6 ng·m−2),其次为Fl(51.3—78.8 ng·m−2),DahA的质量浓度最低(2.8—16.4 ng·m−2). 玻璃表面以2+3环和4环PAHs为主,4环PAHs在春季和冬季占比最高;2+3环PAHs在秋季和夏季占比最高.

      (2)BghiP与T-PAHs之间相关系数呈春季(r=0.99806)>夏季(r=0.97443)>冬季(r=0.90834)>秋季(r=0.889). An/(Phe+An)和Fl/(Fl+Pyr)异构体比值表明主要污染源相对稳定,即为汽车尾气和扬尘源(降尘和裸露表土);而InP/(InP+BghiP)和BaA/(BaA+Chry)异构体比值说明玻璃表面PAHs在春季、秋季和冬季可能更多来源于扬尘源(裸露表土)和秸秆焚烧,油烟和汽车修理厂表土挥发的气相PAHs对夏季PAHs的贡献较明显.

      (3)质量归一化处理后,TEQ浓度呈现出夏季(466.6 ng·g−1)>春季(361.0 ng·g−1)>秋季(262.9 ng·g−1)>冬季(214.6 ng·g−1). BaP、DahA和B[b+k]F是玻璃表面主要的致癌单体PAH,共计占TEQ浓度的80%—91%,其中BaP的TEQ浓度占比高达50%—62%.

    参考文献 (30)

返回顶部

目录

/

返回文章
返回