-
消毒副产物是在消毒工艺过程中由消毒剂与水中存在的天然有机物、人为污染物及卤素离子等前驱物反应生成的次生污染物(Disinfection by-products,DBPs)[1], DBPs主要包括卤甲烷、卤代酮、卤乙腈、卤化硝基甲烷、卤乙酸、卤代乙醛、卤代乙酰胺和卤代苯酚类化合物等[2],其中卤甲烷、卤代酮、卤乙腈等低沸点物质被称为挥发性消毒副产物(volatile disinfection by-products,V-DBPs). 大部分V-DBPs具有细胞毒性、遗传毒性以及致癌、致畸和致突变的特性[3-6],卤甲烷具有致癌、致突变效应[7-10],卤代酮具有致癌、致畸和致突变效应[1,11],卤乙腈具有极强的细胞毒性、遗传毒性及致畸、致突变性效应,其细胞毒性和遗传毒性远大于三卤甲烷等常规DBPs[12-13],卤代硝基甲烷具有细胞毒性、遗传毒性及致突变性效应[15].
由于饮用水中DBPs的广泛存在和潜在健康风险,全球许多国家、地区或组织均颁布了水质评价标准或指南对DBPs进行管控,以减少DBPs带来的健康风险[16]. 中国《生活饮用水卫生标准》(GB 5749-2022)、世界卫生组织《饮用水质量指南(第四版)》、欧盟理事会《1998年11月3日理事会指令 98/83/EC人类用水质量》、日本《饮用水水质标准》和美国环境保护局《国家饮用水基本规则: 第2阶段消毒剂及消毒副产物准则》等标准均对卤甲烷、卤乙酸等常见DBPs有相应的限值要求[13,17],中国上海市、江苏省、深圳市各自出台了生活饮用水地方标准,对《生活饮用水卫生标准》中原有DBPs进行了更严格规定并将其他高毒性DBPs指标纳入管控,例如亚硝胺类DBPs指标NDMA(N-亚硝基二甲胺)、碘代DBPs〔IAA(碘乙酸)和DCIM(二氯一碘甲烷)〕等[15,17-19]. 目前DBPs标准检测方法检出限大多为mg·L−1级别,且仅能同时测定单一类别DBPs,不能满足同时快速测定多种DBPs需要. 因此建立准确灵敏、同步高效的多种消毒副产物分析方法对DBPs管控具有重要意义.
本研究基于吹扫捕集-气相色谱-质谱联用法(P&T-GC-MS)技术建立了同时测定水中4类14种挥发性消毒副产物(V-DBPs)的方法,检测目标物的检出限低至ng·L−1级别,具有良好的灵敏度、精密度和正确度评价,满足准确快速测定水体中14种挥发性消毒副产物的要求.
吹扫捕集-气相色谱-质谱法同时测定水体中14种挥发性消毒副产物
Study on determination of 14 kinds of volatile disinfection by-products in water by purge and trap /gas chromatography /mass spectrometry
-
摘要: 基于吹扫捕集-气相色谱-质谱联用法(P&T-GC-MS)技术建立了同时测定水中4类14种挥发性消毒副产物(V-DBPs)的方法,并对吹扫捕集条件及色谱条件进行了优化. 水中的挥发性消毒副产物经吹扫捕集、热脱附,Rtx-624色谱柱分离,选择离子扫描模式方式进行测定,内标法定量. 结果显示,校准曲线相关系数均大于0.999,方法检出限为1.72—374 ng·L−1,不同浓度下实际样品加标回收率为76.1%—114%,相对标准偏差为2.4%—13%. 利用本方法对自来水开展检测,分别检出三氯甲烷、1,2-二氯乙烷、二氯一溴甲烷、氯乙腈、1,1-二氯丙酮、二氯乙腈、1,1,1-三氯丙酮等7种消毒副产物,检出浓度范围为3.21—16.6 μg·L−1,检出率为36%—100%,其中二氯甲烷、三氯甲烷、1,2-二氯乙烷、二氯一溴甲烷、一氯二溴甲烷和三溴甲烷的结果均符合《生活饮用水卫生标准》(GB5749-2022)规定的限值要求. 该方法具有前处理简单、重现性好、正确度高等特点,适用于同时快速测定水中14种挥发性消毒副产物.
-
关键词:
- 水体 /
- 挥发性消毒副产物 /
- 吹扫捕集 /
- 气相色谱–质谱法(GC/MS)
Abstract: A method for the simultaneous determination of 14 kinds of volatile disinfection by-products (V-DBPs) in water was developed based on purge and trap gas chromatography-mass spectrometry (P&T-GC-MS), and the purge and trap conditions were optimized. The volatile disinfection by-products in water are separated by Rtx-624 chromatographic column after purging and trapping, thermal desorption, and determined by selecting ion scanning mode, and quantified by internal standard method. The results showed that the correlation coefficient of the calibration curve was greater than 0.999, the detection limit of the method was 1.72—374 ng·L−1. The recoveries of spiked samples at different concentrations were in the range of 76.1%—114%, and the relative standard deviation was 2.4%—13%. This method is used to detect disinfection by-products in tap water, Seven disinfection by-products including trichloromethane, 1,2-dichloroethane, dichloromethane, chloroacetonitrile, 1,1-dichloroacetone, dichloroacetonitrile and 1,1,1-trichloroacetone were detected respectively, and the detection concentration range is 3.21 ng·L−1—16.6 μg·L−1, detection rate is 36%—100%, the results of dichloromethane, chloroform, 1,2-dichloroethane, dichloromonobromomethane, monochlorodibromodane, and tribromomethane all meet the limit requirements specified in the standards for drinking water quality (GB5749-2022). This method has characteristics of simple pretreatment, good reproducibility and high accuracy, and is suitable for the simultaneous rapid determination of 14 volatile disinfection by-products in water. -
表 1 14种挥发性消毒副产物方法性能指标
Table 1. Performance index of 14 disinfection by-product methods
序号 化合物 浓度范围/
(μg·L−1)定量离子 辅助离子 相关系数 检出限/
(ng·L−1)定量限/
(ng·L−1)加标水平/(μg·L−1) 相对标准偏差RSD/% 回收率/% 低 中 高 自来水 低 中 高 自来水 低 中 高 自来水 1 二氯甲烷 0.1—20 49 84, 51 0.9992 23.1 92.2 0.10 5.00 18.0 2.00 6.5 9.4 9.0 9.2 111 102 98.7 108 2 三氯甲烷 0.1—20 83 85, 47 0.9991 5.59 22.3 0.02 5.00 18.0 6.00 5.6 4.3 5.1 6.5 92.7 114 104 105 3 1,2-二氯乙烷 0.1—20 62 64, 49 0.9994 4.77 19.1 0.02 5.00 18.0 0.03 2.7 5.8 5.4 4.4 112 113 102 90.3 4 氯丙酮 1.0—50 43 49, 92 0.9993 374 1495 1.50 5.00 18.0 2.00 7.7 11 5.3 2.8 77.3 89.0 104 98.8 5 二氯一溴甲烷 0.1 —20 83 85, 47 0.9995 2.57 10.3 0.01 5.00 18.0 4.00 4.5 6.0 4.5 3.1 85.6 103 102 95.0 6 氯乙腈 0.1 —20 75 77, 48 0.9998 5.79 23.1 0.02 5.00 18.0 0.02 2.4 5.9 9.3 11 104 102 105 107 7 1,1-二氯丙酮 0.1 —20 43 63, 83 0.9996 18.2 72.8 0.10 5.00 18.0 0.15 7.8 7.1 3.1 2.7 78.2 93.0 103 90.6 8 二氯乙腈 0.1 —20 74 82, 84 0.9997 2.60 10.4 0.01 5.00 18.0 0.30 4.1 6.0 3.4 1.9 77.5 87.4 95.4 94.2 9 三氯硝基甲烷 0.1—20 117 119, 82 0.9990 4.39 17.5 0.02 5.00 18.0 2.00 5.8 8.3 6.1 10 83.3 96.9 105 92.2 10 一氯二溴甲烷 0.1 —20 129 127, 131 0.9995 1.72 6.86 0.01 5.00 18.0 2.00 4.4 6.5 4.2 1.5 85.4 96.5 102 92.0 11 溴乙腈 1.0—50 119 121, 79 0.9994 198 794 1.00 5.00 18.0 2.00 12 7.3 5.2 13 76.1 79.9 95.9 97.7 12 1,1,1-三氯丙酮 0.1—20 43 125, 97 0.9996 20.8 83.0 0.10 5.00 18.0 0.50 9.0 5.0 6.2 11 78.3 83.3 96.7 83.6 13 1,2-二溴丙烷 5.0(内标) 121 123, 41 — — — — — — — — — — — — — — — 14 溴氯乙腈 1.0 —50 74 76, 151 0.9991 99.0 396 0.50 5.00 18.0 2.00 4.1 13 11 15 76.4 79.1 95.1 84.7 15 三溴甲烷 0.1—20 173 171, 91 0.9997 1.94 7.74 0.01 5.00 18.0 2.00 3.0 6.5 3.5 2.6 78.4 94.2 102 87.2 -
[1] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1/2/3): 178-242. [2] 楚文海, 肖融, 丁顺克, 等. 饮用水中的消毒副产物及其控制策略 [J]. 环境科学, 2021, 42(11): 5059-5074. doi: 10.13227/j.hjkx.202103034 [3] ZHANG B B, XIAN Q M, GONG T T, et al. DBPs formation and genotoxicity during chlorination of pyrimidines and purines bases [J]. Chemical Engineering Journal, 2017, 307: 884-890. doi: 10.1016/j.cej.2016.09.018 [4] CHAVES R S, GUERREIRO C S, CARDOSO V V, et al. Hazard and mode of action of disinfection by-products (DBPs) in water for human consumption: Evidences and research priorities [J]. Comparative Biochemistry and Physiology. Toxicology & Pharmacology:CBP, 2019, 223: 53-61. [5] 赵玉丽, 李杏放. 饮用水消毒副产物: 化学特征与毒性 [J]. 环境化学, 2011, 30(1): 20-33. [6] TARDIFF R G, CARSON M L, GINEVAN M E. Updated weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products [J]. Regulatory Toxicology and Pharmacology, 2006, 45(2): 185-205. doi: 10.1016/j.yrtph.2006.03.001 [7] 杨飞飞. 二氯甲烷肝脏毒性的实验研究[D]. 济南: 济南大学, 2016: 1-2. [8] CORTÉS C, MARCOS R. Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2018, 831: 1-12. doi: 10.1016/j.mrgentox.2018.04.005 [9] WOLF D C, BUTTERWORTH B E. Risk assessment of inhaled chloroform based on its mode of action [J]. Toxicologic Pathology, 1997, 25(1): 49-52. doi: 10.1177/019262339702500110 [10] LIVIAC D, CREUS A, MARCOS R. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro [J]. Environmental Research, 2009, 109(3): 232-238. doi: 10.1016/j.envres.2008.12.009 [11] KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts [J]. Environmental Science & Technology, 2006, 40(23): 7175-7185. [12] ZHANG L, XU L, ZENG Q, et al. Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2012, 741(1/2): 89-94. [13] 朱红霞, 薛荔栋, 刘进斌, 等. 含氯消毒副产物的种类、危害与地表水污染现状 [J]. 环境科学研究, 2020, 33(7): 1640-1648. doi: 10.13198/j.issn.1001-6929.2020.06.14 [14] LIVIAC D, CREUS A, MARCOS R. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro[J]. Environmental Research, 2009, 109(3): 232-238. [15] 肖融, 楚文海. 全球饮用水标准中消毒副产物管控指标对比与启示 [J]. 环境科学研究, 2021, 34(6): 1328-1337. doi: 10.13198/j.issn.1001-6929.2020.10.26 [16] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国标准出版社, 2007. [17] 上海市质量技术监督局. 生活饮用水水质标准: DB31/T 1091—2018[S]. 2019. [18] 江苏省市场监督管理局. 江苏省城市自来水厂关键水质指标控制标准: DB32/T 3701—2019[S]. [19] 深圳市市场监督管理局. 生活饮用水水质标准: DB4403/T 60—2020[S].