-
随着化石燃料的不断消耗和引发的环境问题日益突出,开发可替代的可持续能源已迫在眉睫. 在各种可再生的替代能源中,太阳能是最有前途的一种[1]. 然而,太阳能具有分散性和时空不连续性,需要将其转化成其他能源才方便使用[2]. 氢气能量密度高、不含碳、燃烧产物清洁无污染,因此,通过太阳光水裂解制氢是一种可持续、很有前途的太阳能转换方法[3]. 在光催化水解制氢这一过程中,最重要的就是光催化剂,它负责光的吸收、能量传递和水的分解[4-5]. 目前无机半导体光催化剂(如二氧化钛(TiO2)、SrTiO3、g-C3N4等)在光催化裂解水中占主导地位,但这些材料可见光响应范围较窄,阻碍了实际应用的发展[6–8].
COFs是一类由有机分子单体(即构建单元)通过共价键连接形成的结晶多孔聚合物[9]. 这种材料具有孔隙率高、密度低、比表面积大、孔道规则、孔径可调以及拓扑结构多样性的特点[10–13],在气体储存[14]、污染物吸附[15-16]、分离[17-18]、催化[19–21]以及药物递送[22-23]等应用方面有很大的优势. 近年来,COFs在光催化研究中也显示出巨大的潜力[24-25]. COFs的高度结晶性和多孔结构有利于提高载流子的迁移率,降低电子和空穴的复合率. 完全的共价键连接使得COFs具有良好的化学稳定性,固定在刚性结构骨架中的光活性单元也可以避免被光腐蚀,提高激发态的寿命. 更重要的是,通过合理地调节构建单元的光反应活性,可以精细调节COFs的光响应性和带隙[26]. 因此,COFs是无机半导体光催化剂的理想替代品[27].
Lotsch等以一种腙键连接的三嗪基TFPT-COF为光催化剂,在可见光照射下分解水制氢,氢气的析出速率可达1970 μmol·h−1·g−1[28]. 随后,该团队发现通过调节单体的结构,可以调节COFs的光催化活性[29]. 另外,一些研究表明在COFs的骨架上引入特定的基团,可以显著增强COFs的光催化析氢活性[20,30–32]. 最近,本研究团队也发现,在乙烯撑连接键上引入氰基能显著提高COFs的析氢性能,析氢速率可从116.58 μmol·h−1·g−1提升至698.68 μmol·h−1·g−1[33]. 除了更换单体外,增加COFs的比表面积也可以大幅改善COFs的光催化析氢性能. Zhu等通过合成后框架重构的方法,制备了高结晶、高稳定的β-酮烯胺键连接的RC-COF-1,与常规方法合成的相同COF相比,其比表面积提高了近2倍(580 m2·g−1到1712 m2·g−1),与此同时材料的光催化析氢速率从7.04 mmol·h−1·g−1提升到了27.98 mmol·h−1·g-1 [34].
综上所述,调节单体结构和改善材料晶形是改善COFs的光催化析氢性能的两种主要策略. 本文报道了一种新的合成策略可以用来提高COFs的光催化析氢活性. 通过使用4-氨基苯甲醛作为连接单元,它可以连接氨基和醛基单体形成一系列三组分COFs. COFs骨架中ABA的共价整合使三组分COFs具有比不含ABA的双组分COFs更强的光催化析氢性能. 机理研究表明,ABA对COFs光催化析氢性能的调节主要是因为改变了材料的光学带隙和光生载流子的分离和迁移效率. 该研究结果为改善COFs的光催化析氢性能提供了新的方法,也为增加亚胺连接的2D COFs的功能复杂性开辟了新的道路.
双功能单体改进二维共价有机框架材料的光催化析氢性能
Improving photocatalytic hydrogen evolution reaction performance of two-dimensional covalent organic frameworks by a bifunctional linker
-
摘要: 本研究报道了一种新的三组分合成策略,可以用来提高二维共价有机框架材料(covalent organic frameworks,COFs)的光催化析氢活性. 4-氨基苯甲醛(4-aminobenzaldehyde,ABA)既含有氨基又含有醛基,可以作为连接单元和调节剂改变COFs的晶体结构、提高其比表面积和改善晶型. 光催化析氢实验表明,COFs骨架中ABA的共价整合,使三组分COFs的光催化析氢效率显著高于不含ABA的双组分COFs催化剂,其中Tp-ABAx-TAPB COF光催化析氢速率比Tp-TAPB提升了14.3倍. 机理研究表明,ABA结构有效调节了材料的光学带隙大小,增强了COFs光生载流子的分离和迁移效率.Abstract: In the present study, we proposed a novel three-component covalent organic frameworks (COFs) synthesis strategy to improve the photocatalytic hydrogen generation activity of two-dimensional COFs. 4-Aminobenzaldehyde (ABA), which contains both amino and aldehyde groups, can be used as a linker and a modulator to adjust the lattice parameters, increase specific surface areas and enhance the crystallinity of COFs. The three-component COFs were applied as photocatalysts for the photocatalytic hydrogen production. Owing to the covalent integration of ABA into COFs skeletons, the hydrogen evolution reaction (HER) rates photocatalyzed by three-component COFs were significantly higher than those catalyzed by two-component COFs without ABA. Compared to Tp-TAPB, the HER rate achieved by Tp-ABAx-TAPB COF had been increased by 14.3 times. The investigation on photoelectric properties of COFs suggested that the integration of ABA could adjust the band gaps of COFs and enhance the separation and transport efficiency of photo-induced charge carriers.
-
表 1 具有高光催化析氢性能的COFs材料对比
Table 1. Comparison of COFs with high photocatalytic HER activity
-
[1] WANG Z, LI C, DOMEN K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting [J]. Chemical Society Reviews, 2019, 48(7): 2109-2125. doi: 10.1039/C8CS00542G [2] ZHU S S, WANG D W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities [J]. Advanced Energy Materials, 2017, 7(23): 1700841. doi: 10.1002/aenm.201700841 [3] HISATOMI T, DOMEN K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts [J]. Nature Catalysis, 2019, 2(5): 387-399. doi: 10.1038/s41929-019-0242-6 [4] LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts [J]. Advanced Materials, 2017, 29(20): 1601694. doi: 10.1002/adma.201601694 [5] SACHS M, CHA H, KOSCO J, et al. Tracking charge transfer to residual metal clusters in conjugated polymers for photocatalytic hydrogen evolution [J]. Journal of the American Chemical Society, 2020, 142(34): 14574-14587. doi: 10.1021/jacs.0c06104 [6] LI W, ELZATAHRY A, ALDHAYAN D, et al. Core-shell structured titanium dioxide nanomaterials for solar energy utilization [J]. Chemical Society Reviews, 2018, 47(22): 8203-8237. doi: 10.1039/C8CS00443A [7] GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges [J]. Advanced Materials, 2019, 31(50): e1901997. doi: 10.1002/adma.201901997 [8] WANG Y O, VOGEL A, SACHS M, et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts [J]. Nature Energy, 2019, 4(9): 746-760. doi: 10.1038/s41560-019-0456-5 [9] CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks [J]. Science, 2005, 310(5751): 1166-1170. doi: 10.1126/science.1120411 [10] HUANG N, WANG P, JIANG D L. Covalent organic frameworks: A materials platform for structural and functional designs [J]. Nature Reviews Materials, 2016, 1: 16068. doi: 10.1038/natrevmats.2016.68 [11] LIU X G, HUANG D L, LAI C, et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material [J]. Chemical Society Reviews, 2019, 48(20): 5266-5302. doi: 10.1039/C9CS00299E [12] ABUZEID H R, EL-MAHDY A F M, KUO S W. Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications [J]. Giant, 2021, 6: 100054. doi: 10.1016/j.giant.2021.100054 [13] LIU R Y, TAN K T, GONG Y F, et al. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications [J]. Chemical Society Reviews, 2021, 50(1): 120-242. doi: 10.1039/D0CS00620C [14] FURUKAWA H, YAGHI O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications [J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883. doi: 10.1021/ja9015765 [15] XIA Z J, ZHAO Y S, DARLING S B. Covalent organic frameworks for water treatment [J]. Advanced Materials Interfaces, 2021, 8(1): 2001507. doi: 10.1002/admi.202001507 [16] MA Z Y, LIU F Y, LIU N S, et al. Facile synthesis of sulfhydryl modified covalent organic frameworks for high efficient Hg(II) removal from water [J]. Journal of Hazardous Materials, 2021, 405: 124190. doi: 10.1016/j.jhazmat.2020.124190 [17] WANG S Z, YANG L T, XU K, et al. De novo fabrication of large-area and self-standing covalent organic framework films for efficient separation [J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44806-44813. doi: 10.1021/acsami.1c14420 [18] HE Y S, LIN X G, ZHOU Y M, et al. Synthesizing highly crystalline self-standing covalent organic framework films through a homogeneous-floating-concentrating strategy for molecular separation [J]. Chemistry of Materials, 2021, 33(23): 9413-9424. doi: 10.1021/acs.chemmater.1c03414 [19] WEI P F, QI M Z, WANG Z P, et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis [J]. Journal of the American Chemical Society, 2018, 140(13): 4623-4631. doi: 10.1021/jacs.8b00571 [20] JIN E Q, LAN Z A, JIANG Q H, et al. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water [J]. Chem, 2019, 5(6): 1632-1647. doi: 10.1016/j.chempr.2019.04.015 [21] YAO X Y, CHEN K H, QIU L Q, et al. Ferric porphyrin-based porous organic polymers for CO2 photocatalytic reduction to syngas with selectivity control [J]. Chemistry of Materials, 2021, 33(22): 8863-8872. doi: 10.1021/acs.chemmater.1c03136 [22] FANG Q R, WANG J H, GU S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery [J]. Journal of the American Chemical Society, 2015, 137(26): 8352-8355. doi: 10.1021/jacs.5b04147 [23] MITRA S, SASMAL H S, KUNDU T, et al. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification [J]. Journal of the American Chemical Society, 2017, 139(12): 4513-4520. doi: 10.1021/jacs.7b00925 [24] YAGHI O M, KALMUTZKI M J, DIERCKS C S. Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. [25] GENG K Y, HE T, LIU R Y, et al. Covalent organic frameworks: Design, synthesis, and functions [J]. Chemical Reviews, 2020, 120(16): 8814-8933. doi: 10.1021/acs.chemrev.9b00550 [26] WANG H, WANG H, WANG Z W, et al. Covalent organic framework photocatalysts: Structures and applications [J]. Chemical Society Reviews, 2020, 49(12): 4135-4165. doi: 10.1039/D0CS00278J [27] MA S, DENG T Q, LI Z P, et al. Photocatalytic hydrogen production on a sp2-carbon-linked covalent organic framework [J]. Angewandte Chemie (International Ed. in English), 2022, 61(42): e202208919. doi: 10.1002/anie.202208919 [28] STEGBAUER L, SCHWINGHAMMER K, LOTSCH B V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production [J]. Chemical Science, 2014, 5(7): 2789-2793. doi: 10.1039/C4SC00016A [29] VYAS V S, HAASE F, STEGBAUER L, et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation [J]. Nature Communications, 2015, 6: 8508. doi: 10.1038/ncomms9508 [30] LI C Z, LIU J L, LI H, et al. Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution [J]. Nature Communications, 2022, 13: 2357. doi: 10.1038/s41467-022-30035-x [31] WANG L T, ZHANG L L, LIN B Z, et al. Activation of carbonyl oxygen sites in β-ketoenamine-linked covalent organic frameworks via cyano conjugation for efficient photocatalytic hydrogen evolution [J]. Small, 2021, 17(24): e2101017. doi: 10.1002/smll.202101017 [32] MI Z, ZHOU T, WENG W J, et al. Covalent organic frameworks enabling site isolation of viologen-derived electron-transfer mediators for stable photocatalytic hydrogen evolution [J]. Angewandte Chemie, 2021, 60(17): 9642-9649. doi: 10.1002/anie.202016618 [33] YANG Y L, LUO N, LIN S Y, et al. Cyano substituent on the olefin linkage: Promoting rather than inhibiting the performance of covalent organic frameworks [J]. ACS Catalysis, 2022, 12(17): 10718-10726. doi: 10.1021/acscatal.2c02908 [34] ZHANG W W, CHEN L J, DAI S, et al. Reconstructed covalent organic frameworks [J]. Nature, 2022, 604(7904): 72-79. doi: 10.1038/s41586-022-04443-4 [35] SUN Q, NIU H Y, SHI Y L, et al. Tuning the lattice parameters and porosity of 2D imine covalent organic frameworks by chemically integrating 4-aminobenzaldehyde as a bifunctional linker [J]. Chemical Communications, 2022, 58(92): 12875-12878. doi: 10.1039/D2CC05211C [36] YANG J, ACHARJYA A, YE M Y, et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution [J]. Angewandte Chemie, 2021, 60(36): 19797-19803. doi: 10.1002/anie.202104870 [37] LI Y M, YANG L, HE H J, et al. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production [J]. Nature Communications, 2022, 13: 1355. doi: 10.1038/s41467-022-29076-z