-
盐酸林可霉素(LCM)属于林可酰胺类抗生素,用于治疗各种细菌感染,对革兰氏阳性菌有灭杀作用,因此广泛应用于人类及兽类相关疾病的治疗、预防等等领域[1]. 动物及人体代谢相关研究表明,该药物在体内代谢速度慢,人体有大概5%—15%的LCM以原形排出,而动物体内60%的林可酰胺类药物以原形排出[2-3],因此相当部分LCM会排泄出体外并进入环境水体. 然而却很少有针对LCM在自然条件及人工强化条件下降解的去除研究,同时对其降解过程的中间产物、降解路径也知之甚少.
在污水处理厂或自来水厂中,UV/H2O2结合是去除水中污染物的有效间接光降解方法之一[4-6]. 其主要原理被认为是通过H2O2的光解产生活性较强的羟基自由基(·OH),羟基自由基(·OH)可以以很高的速率并且非选择性地氧化有机污染物[7-8],同时在该反应过程中不会引入新的污染物. 因此本文主要研究LCM在UV/H2O2体系中不同条件下的降解情况,同时通过鉴定LCM降解过程的中间产物,提出LCM在该反应中的降解途径,并对反应过程的中间产物进行毒性预测. 为水环境中残留的林可酰胺类的抗生素类药物的去除与控制提供有效思路,为水质安全保障提供理论依据和技术支撑.
UV/H2O2对盐酸林可霉素的光催化降解及生物毒性分析
Photocatalytic degradation and biotoxicity evaluation of lincomycin hydrochloride by the UV/H2O2 process
-
摘要: 本文以盐酸林可霉素(LCM)为研究对象,探究其在UV/H2O2降解作用下的降解情况,探讨了H2O2浓度、初始pH值和有机物等影响因素对LCM的影响及机制. 实验结果表明,当H2O2浓度为50 mg·L−1,pH=7.3,LCM浓度为10 mg·L−1,反应30 min后,LCM去除率达到98%,且反应过程遵循准一级动力学. 利用高效液相色谱串联飞行时间质谱仪(LCMS-TOF 5600+)鉴别出其在UV/H2O2降解过程中主要产物的分子结构式,进而推导出可能的降解路径. 利用TEST对降解过程中的产物进行毒性预测,结果表明,中间产物的毒性高于母体,对水质安全保障造成潜在风险.Abstract: In the present study, main degradation of Lincomycin hydrochloride (LCM) was investigated by UV/H2O2 process; the effects of H2O2 concentration, initial pH value and organic matter on the degradation were also investigated. The results showed that 98% of LCM can be degraded as the reaction time was 30 min, in order to get this optimal result we should keep H2O2 concentration was 50 mg·L−1, pH =7.3 and LCM concentration was 10 mg·L−1 at the same time, the degradation process follows the rule of quasi-first-grade dynamics. The molecular structure formula of the main products in the degradation process was identified by high-performance liquid chromatography tandem time-of-flight mass spectrometry (LCMS-TOF5600+), and transformation pathways were proposed. TEST was used to predict the toxicity of the products in the degradation process. The prediction indicated that the intermediates with higher toxicity than the parent would be generated during the UV/H2O2 process, which had the potential ecological risks to the water quality security.
-
Key words:
- UV/H2O2 /
- biotoxicity evaluation /
- Lincomycin hydrochloride /
- degradation mechanism.
-
表 1 MS/MS检测器的运行参数
Table 1. Operation parameters of the MS/MS detector
参数
Parameter离子化方式
Ionisation扫描模式
Scan type离子源温度
TEM气帘气
CUR雾化气
GS1辅助气
GS2CAD 电喷雾电压
IS扫描时间
Total scan time分析条件
Analytical conditionsESI MRM 500 ℃ 30 psi 45 psi 30 psi 8 psi 5500 10 min 表 2 化合物的MRM参数和保留时间
Table 2. MRM parameters and retention times of compounds
分析物
Analyte母离子
Precursor ion (m/z)子离子
Product ion (m/z)DP/ V CE/ eV Lincomycin 1 407.0 126.0 50 33.12 Lincomycin 2 407.0 359.0 30 24.72 表 3 T.E.S.T.软件计算的药品和中间产物的毒性评估
Table 3. Toxicity assessment for pharmaceuticals and transformation products calculated by T.E.S.T. software.
化合物名称
Compound name大型蚤/(mg·L−1)
Daphnia magna LC50(48 h)小鼠经口给毒/(mg·kg−1)
Oral rat LD50Ames致畸性
Ames MutagenicityLCM 771.87 1291.60 0.07(Mutagenicity Negative) LCM-TP390 345.29 557.28 0.08(Mutagenicity Negative) LCM-TP344 523.57 2056.44 0.03(Mutagenicity Negative) LCM-TP328 221.90 2117.80 0.16(Mutagenicity Negative) LCM-TP346 1598.07 2459.67 0.01(Mutagenicity Negative) LCM-TP312 163.37 538.60 −0.07(Mutagenicity Negative) LCM-TP260 735.75 2201.19 0.23(Mutagenicity Negative) LCM-TP316 579.49 2862.69 0.18(Mutagenicity Negative) LCM-TP298 127.12 985.53 0.08(Mutagenicity Negative) LCM-TP280 89.41 143.37 0.07(Mutagenicity Negative) LCM-TP256 124.69 3396.18 0.16(Mutagenicity Negative) LCM-TP388 171.95 370.50 0.04(Mutagenicity Negative) LCM-TP374 67.52 N/A 0.36(Mutagenicity Negative) LCM-TP340 136.19 296.22 0.02(Mutagenicity Negative) LCM-TP322 42.59 211.30 0.17(Mutagenicity Negative) LCM-TP268 68.86 N/A 0.04(Mutagenicity Negative) LCM-TP356 8.61 N/A 0.40(Mutagenicity Negative) LCM-TP288 619.73 3949.44 0.25(Mutagenicity Negative) LCM-TP170 27.87 1037.97 0.07(Mutagenicity Negative) LCM-TP127 20.30 540.60 −0.04(Mutagenicity Negative) LCM-TP358 477.89 2233.90 0.01(Mutagenicity Negative) LCM-TP326 129.21 364.75 −0.01(Mutagenicity Negative) LCM-TP360 1380.21 2113.15 −0.02(Mutagenicity Negative) LCM-TP328 221.90 2117.80 0.16(Mutagenicity Negative) -
[1] ANDREOZZI R, CANTERINO M, GIUDICE R L, et al. Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation [J]. Water Research, 2006, 40(3): 630-638. doi: 10.1016/j.watres.2005.11.023 [2] van EPPS A, BLANEY L. Antibiotic residues in animal waste: Occurrence and degradation in conventional agricultural waste management practices [J]. Current Pollution Reports, 2016, 2(3): 135-155. doi: 10.1007/s40726-016-0037-1 [3] ANDREOZZI R, CANTERINO M, MAROTTA R, et al. Antibiotic removal from wastewaters: The ozonation of amoxicillin [J]. Journal of Hazardous Materials, 2005, 122(3): 243-250. doi: 10.1016/j.jhazmat.2005.03.004 [4] HE H, JI Q Y, GAO Z Q, et al. Degradation of tri(2-chloroisopropyl) phosphate by the UV/H2O2 system: Kinetics, mechanisms and toxicity evaluation [J]. Chemosphere, 2019, 236: 124388. doi: 10.1016/j.chemosphere.2019.124388 [5] YIN K, DENG L, LUO J M, et al. Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation potential [J]. Chemical Engineering Journal, 2018, 351: 867-877. doi: 10.1016/j.cej.2018.06.164 [6] WOLS B A, HOFMAN-CARIS C H M, HARMSEN D J H, et al. Degradation of 40 selected pharmaceuticals by UV/H2O2 [J]. Water Research, 2013, 47(15): 5876-5888. doi: 10.1016/j.watres.2013.07.008 [7] ALFANO O M, BRANDI R J, CASSANO A E, et al. Degradation kinetics of 2, 4-D in water employing hydrogen peroxide and UV radiation [J]. Chemical Engineering Journal, 2001, 82(1/2/3): 209-218. [8] ANDREOZZI R, CAPRIO V, INSOLA A, et al. Advanced oxidation processes (AOP) for water purification and recovery [J]. Catalysis Today, 1999, 53(1): 51-59. doi: 10.1016/S0920-5861(99)00102-9 [9] PAOLA A D, ADDAMO M, AUGUGLIARO V, et al. Photodegradation of lincomycin in aqueous solution [J]. International Journal of Photoenergy, 2006, 2006: 047418. [10] LIAO Q N, JI F, LI J C, et al. Decomposition and mineralization of sulfaquinoxaline sodium during UV/H2O2 oxidation processes [J]. Chemical Engineering Journal, 2016, 284: 494-502. doi: 10.1016/j.cej.2015.08.150 [11] AHMAD I, BANO R, MUSHARRAF S G, et al. Photodegradation of norfloxacin in aqueous and organic solvents: A kinetic study [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2015, 302: 1-10. doi: 10.1016/j.jphotochem.2015.01.005 [12] WANG F G, WANG W J, YUAN S J, et al. Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 348: 79-88. doi: 10.1016/j.jphotochem.2017.08.023 [13] LIU N, SIJAK S, ZHENG M, et al. Aquatic photolysis of florfenicol and thiamphenicol under direct UV irradiation, UV/H2O2 and UV/Fe(II) processes [J]. Chemical Engineering Journal, 2015, 260: 826-834. doi: 10.1016/j.cej.2014.09.055 [14] CZARNIAK P, BODDY M, SUNDERLAND B, et al. Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids [J]. Drug Design, Development and Therapy, 2016, 10: 1029-1034. [15] XU B, GAO N Y, CHENG H F, et al. Oxidative degradation of dimethyl phthalate (DMP) by UV/H2O2 process [J]. Journal of Hazardous Materials, 2009, 162(2/3): 954-959. [16] PORRAS J, BEDOYA C, SILVA-AGREDO J, et al. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water [J]. Water Research, 2016, 94: 1-9. doi: 10.1016/j.watres.2016.02.024 [17] GARBIN J R, MILORI D M B P, SIMÕES M L, et al. Influence of humic substances on the photolysis of aqueous pesticide residues [J]. Chemosphere, 2007, 66(9): 1692-1698. doi: 10.1016/j.chemosphere.2006.07.017 [18] MANO T, NISHIMOTO S, KAMESHIMA Y, et al. Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation [J]. Chemical Engineering Journal, 2015, 264: 221-229. doi: 10.1016/j.cej.2014.11.088 [19] CALZA P, MEDANA C, PADOVANO E, et al. Identification of the unknown transformation products derived from lincomycin using LC-HRMS technique [J]. Journal of Mass Spectrometry, 2012, 47(6): 751-759. doi: 10.1002/jms.3012 [20] GAO B, DONG S N, LIU J D, et al. Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn2S4 [J]. Chemical Engineering Journal, 2016, 304: 826-840. doi: 10.1016/j.cej.2016.07.029 [21] KIM I Y, KIM M K, YOON Y, et al. Kinetics and degradation mechanism of clofibric acid and diclofenac in UV photolysis and UV/H2O2 reaction [J]. Desalination and Water Treatment, 2014, 52(31/32/33): 6211-6218.