-
铁氧化物广泛的存在于自然界中,常见的有针铁矿、水铁矿、纤铁矿等. 铁氧化物因比表面积大及氧化活性高等特点,影响重金属元素(如Cu、Pb和Zn等)、有机污染物和营养元素(如C、N、P和S等)的迁移、转化和归趋[1]. 因此,自然环境中铁氧化物的形成过程在环境化学和土壤学等领域备受关注. 铁氧化物可由Fe(Ⅱ)氧化或其他铁氧化物转化形成[2-5]. 自然界中的铁氧化物与锰氧化物常交结伴生,它们常以铁锰结核或包覆物的形式存在[6-9]. 锰氧化物是环境中重要的氧化剂,它们直接氧化Fe(Ⅱ)的过程被认为是铁锰结核重要形成途径之一[10]. 通常,Fe(Ⅱ)与四价锰氧化物的反应过程如式(1):
四价锰氧化物被还原,Fe(Ⅱ)被氧化形成铁氧化物. 但Fe(Ⅱ)氧化速率及产物类型受锰氧化物晶体结构影响[11-16]. 例如,在水钠锰矿氧化FeCl2-NH4OH反应中,Fe(Ⅱ)的氧化产物为针铁矿与四方纤铁矿;软锰矿、锰钾矿和黑锰矿氧化Fe(Ⅱ)产物则为纤铁矿、四方纤铁矿和磁铁矿[11-12];六方锰矿(γ-MnO2)与Fe(Ⅱ)氧化产物为MnFe2O4和水铁矿. 因此,不同反应体系中,生成产物及反应机制存在明显差异. 锰氧化物氧化Fe(Ⅱ)速率受pH影响[17-18]. pH < 4.0时,水钠锰矿能快速氧化Fe(Ⅱ),而pH > 4.0时反应速率大幅降低[17]. 现有研究多关注高价态锰氧化物对Fe(Ⅱ)的氧化过程. 黑锰矿由于结构中含有大量的Mn(Ⅲ),既可以在酸性条件下歧化生成高价锰氧化物,又易在碱性条件下发生氧化,因此在环境中难以长期大量稳定存在. 其与Fe(Ⅱ)的相互作用,特别是溶解氧参与的氧化过程有助于认识表生环境铁锰氧化物的形成与共生机理.
本文以典型低价锰氧化物黑锰矿为例,考察其对溶解氧氧化Fe(Ⅱ)过程的影响,采用XRD、FTIR、TEM和XAFS表征过程中间产物以明确黑锰矿氧化Fe(Ⅱ)机理,考察Fe(Ⅱ)浓度、pH和溶解氧对Fe(Ⅲ)氧化物形成过程的影响.
黑锰矿催化氧化Fe(Ⅱ)生成铁氧化物过程及影响因素
Catalytic oxidation process of Fe(Ⅱ) to iron oxides by hausmannite in the presence of dissolved oxygen and its influence factors
-
摘要: 自然界中的锰氧化物常与铁氧化物交结伴生,其形成和转化过程相互影响. Mn(Ⅳ)氧化物与Fe(Ⅱ)反应过程已有较多研究,然而有氧环境中低价锰氧化物氧化Fe(Ⅱ)生成铁氧化物的过程尚缺乏系统研究. 本工作以黑锰矿为例,研究了开放体系中Fe(Ⅱ)在低价氧化锰矿物表面的氧化行为,分析了Fe(Ⅱ)浓度、溶解氧以及pH对Fe(Ⅲ)氧化物形成的影响. 结果表明,黑锰矿在氧化Fe(Ⅱ)形成针铁矿和纤铁矿的同时,自身被部分还原释放Mn(Ⅱ). 当反应体系pH值为3.0时,溶解氧氧化Fe(Ⅱ)作用弱,主要为黑锰矿氧化Fe(Ⅱ)并在其表面生成针铁矿. 当反应体系pH值升高至5.0,黑锰矿催化加速了溶解氧对低浓度(<5.0 mmol·L−1)Fe(Ⅱ)的氧化并生成水铁矿,随后转化成纤铁矿和针铁矿;Fe(Ⅱ)浓度升高(>5.0 mmol·L−1),反应初期Fe(Ⅱ)直接被黑锰矿氧化,形成了以针铁矿和少量纤铁矿组成的包覆层,并导致氧化速率减弱,而溶解氧在Fe(Ⅱ)后期氧化过程中发挥了主导作用. 这些结果丰富了表生环境铁锰氧化物的形成与共生机理,为土壤矿物形成演化提供了基础数据.Abstract: The formation and transformation processes of manganese oxides are usually associated with iron oxides in soils. The reaction of Fe (Ⅱ) with Mn(Ⅳ) oxides has attracted much attention. However, the oxidation process of dissolved Fe(Ⅱ) to iron oxides on the surface of low-valent manganese oxides still lacks systematic research in aerobic environments. In this work, the oxidation behavior of Fe(Ⅱ) on the surface of a representative low-valent manganese oxide mineral, hausmannite, was investigated in an open system, and the effects of Fe(Ⅱ) concentration, pH and dissolved oxygen on the oxidation processes and kinetics were also analyzed. The results showed that hausmannite was reduced to Mn(Ⅱ) and Fe(Ⅱ) was oxidized with the formation goethite and lepidocrocite. At pH 3.0, the oxidation of Fe(Ⅱ) was mainly mediated by hausmannite to form goethite, and the presence of dissolved oxygen had no significant effect on the increase of Fe(Ⅱ) oxidation rate. When pH was increased to 5.0, the catalytic oxidation of Fe(Ⅱ) of low-concentration (< 5.0 mmol·L−1) occurred by hausmannite in the presence of dissolved oxygen, and only ferrihydrite was formed as intermediate, which was subsequently transformed to goethite and lepidocrocite. When the concentration of Fe(Ⅱ) was increased to above 5.0 mmol·L−1, Fe(Ⅱ) was directly oxidized by hausmannite to generate a coating composed of goethite and a small amount of lepidocrocite at the initial stage, resulting in a decrease in the oxidation rate and then dissolved oxygen played a major role in the oxidation of Fe(Ⅱ) oxidation. These results have a better understanding about the formation and symbiosis mechanism of iron and manganese oxides in supergene environments, and provide the basis data on formation and evolution of soil minerals.
-
Key words:
- manganese oxide /
- iron oxide /
- Fe(Ⅱ) /
- catalytic oxidation /
- dissolved oxygen
-
图 1 pH 5.0体系,空气(a)和氮气(b)条件下,0.5 g·L−1黑锰矿与不同初始浓度Fe(Ⅱ)反应24 h后溶液中Fe(Ⅱ)、Mn(Ⅱ)、消耗的Fe(Ⅱ)及空气与氮气消耗的Fe(Ⅱ)浓度差(c)
Figure 1. Concentrations of dissolved Fe(Ⅱ), dissolved Mn(Ⅱ), consumed Fe(Ⅱ) in the systems of 0.5 g·L−1 hausmannite and Fe(Ⅱ) with different initial concentrations in air (a), N2 (b) and the consumtion difference of Fe(Ⅱ) (c) by air and N2 at pH 5.0 for 24 h
图 2 pH 5.0氮气和空气氛围下,0.5 g·L−1黑锰矿与8.0 mmol·L−1 Fe(Ⅱ)体系中不同时间溶解的Mn(Ⅱ) (a),Fe(Ⅱ) (b) 和8.0 mmol·L−1 Fe(Ⅱ)在不同pH,空气氛围下氧化12h后的Fe(Ⅱ) (c)浓度
Figure 2. Concentrations of dissolved Mn(Ⅱ) and Fe(Ⅱ) in the reaction system of 0.5 g·L−1 hausmannite and 8.0 mmol·L−1 Fe(Ⅱ) in air and nitrogen atmosphere at pH 5.0 (a, b) and Fe(Ⅱ) concentration in the reaction system of 8.0 mmol·L−1 Fe(Ⅱ) in air
图 4 用Combo法和线性拟合方法对0.5 g·L−1黑锰矿和8.0 mmol·L−1 Fe(Ⅱ)在pH 5.0的空气氛围下产物的Mn K边XANES谱图(a)和Fe K边 EXAFS 谱图(b)拟合(图4a中圆圈为实验谱,实线为拟合谱,下方实线为残差谱)
Figure 4. Normalized Mn K-edge XANES (a) and the linear combination fitting of Fe K-edge k3-weighted EXAFS (b) spectra of the solid products collected in the rection system of 0.5 g·L−1 hausmannite and 8.0 mmol·L−1 Fe(Ⅱ) in air at pH 5.0
图 6 pH 5.0空气氛围下,6.5 mmol·L−1 Mn(Ⅱ) 和8.0 mmol·L−1 Fe(Ⅱ)(a)和pH 5.0空气、氮气氛围下0.86 g·L−1 针铁矿和8.0 mmol·L−1 Fe(Ⅱ)(b)体系中不同时间点Mn(Ⅱ)和Fe(Ⅱ) 的浓度
Figure 6. Concentrations of dissolved Fe(Ⅱ) and Mn(Ⅱ) in the aqueous system of 6.5 mmol·L−1 Mn(Ⅱ) and 8.0 mmol·L−1 Fe(Ⅱ) (a) and the concentration of dissolved Fe(Ⅱ) in the system of 0.86 g·L−1 goethite and 8.0 mmol·L−1 Fe(Ⅱ) (b) at pH 5.0 in air
图 7 pH 3体系,空气(a)和氮气(b)条件下, 0.5 g·L−1黑锰矿与不同初始浓度Fe(Ⅱ)反应24 h后溶液中Fe(Ⅱ)、Mn(Ⅱ)消耗的Fe(Ⅱ)浓度及空气与氮气消耗的Fe(Ⅱ)浓度差(c)
Figure 7. Concentrations of dissolved Fe(Ⅱ), dissolved Mn(Ⅱ), consumed Fe(Ⅱ) in the systems of 0.5 g·L−1 hausmannite and Fe(Ⅱ) with different initial concentrations in air (a), N2(b) and the consumtion difference of Fe(Ⅱ) by air and N2 (c) at pH 3.0 for 24 h
表 1 pH 5.0空气氛围下,0.5 g·L−1黑锰矿和8.0 mmol·L−1 Fe(Ⅱ)反应产物的Mn(Ⅱ、Ⅲ、Ⅳ)的相对含量及平均锰氧化度
Table 1. Mn AOS and relative content of Mn(Ⅱ, Ⅲ, Ⅳ) of the solid products collected from the reaction of 0.5 g·L−1 hausmannite and 8.0 mmol·L−1 Fe(Ⅱ) for 0.5 and 6 h in air atmosphere at pH 5.0
反应时间/h
Reaction timeMn(Ⅱ) Mn(Ⅲ) Mn(Ⅳ) Mn AOS 0 0.20 0.73 0.07 2.87 0.5 0.17 0.75 0.08 2.91 6 0.30 0.69 0.01 2.71 -
[1] 童蕾, 曾梦玲, 李民敬, 等. 铁锰氧化物对地下水环境中金霉素的降解 [J]. 环境化学, 2016, 35(5): 917-924. doi: 10.7524/j.issn.0254-6108.2016.05.2015120102 TONG L, ZENG M L, LI M J, et al. Degradation of chlorotetracycline by iron and manganese oxides under simulated groundwater environment [J]. Environmental Chemistry, 2016, 35(5): 917-924(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2015120102
[2] 胡敏, 李芳柏. 土壤微生物铁循环及其环境意义 [J]. 土壤学报, 2014, 51(4): 683-698. HU M, LI F B. Soil microbe mediated iron cycling and its environmental implication [J]. Acta Pedologica Sinica, 2014, 51(4): 683-698(in Chinese).
[3] 罗瑶, 李珊, 刘立虎, 等. 水锰矿与Fe2+的相互作用与转化过程 [J]. 岩石矿物学杂志, 2016, 35(4): 703-711. doi: 10.3969/j.issn.1000-6524.2016.04.010 LUO Y, LI S, LIU L H, et al. Interaction and transformation processes of manganite and Fe2+ [J]. Acta Petrologica et Mineralogica, 2016, 35(4): 703-711(in Chinese). doi: 10.3969/j.issn.1000-6524.2016.04.010
[4] LUO Y, LIU L H, QIAO W C, et al. Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of lithium batteries [J]. Materials Chemistry and Physics, 2016, 170: 239-245. doi: 10.1016/j.matchemphys.2015.12.044 [5] PEDERSEN H D, POSTMA D, JAKOBSEN R, et al. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II) [J]. Geochimica et Cosmochimica Acta, 2005, 69(16): 3967-3977. doi: 10.1016/j.gca.2005.03.016 [6] HOCHELLA M F J, LOWER S K, MAURICE P A, et al. Nanominerals, mineral nanoparticles, and Earth systems [J]. Science, 2008, 319(5870): 1631-1635. doi: 10.1126/science.1141134 [7] PALUMBO B, BELLANCA A, NERI R, et al. Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy [J]. Chemical Geology, 2001, 173(4): 257-269. doi: 10.1016/S0009-2541(00)00284-9 [8] TEBO B M, BARGAR J R, CLEMENT B G, et al. BIOGENIC MANGANESE OXIDES: Properties and mechanisms of formation [J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 287-328. doi: 10.1146/annurev.earth.32.101802.120213 [9] 鲁安怀, 卢晓英, 任子平, 等. 天然铁锰氧化物及氢氧化物环境矿物学研究 [J]. 地学前缘, 2000, 7(2): 473-483. doi: 10.3321/j.issn:1005-2321.2000.02.015 LU A H, LU X Y, REN Z P, et al. New advances in environmental mineralogy of natural oxides and hydroxides of iron and manganese [J]. Earth Science Frontiers, 2000, 7(2): 473-483(in Chinese). doi: 10.3321/j.issn:1005-2321.2000.02.015
[10] JUNTA J L, HOCHELLA M F. Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study [J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 4985-4999. doi: 10.1016/0016-7037(94)90226-7 [11] GAO T Y, SHEN Y G, JIA Z H, et al. Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems [J]. Geochemical Transactions, 2015, 16(1): 16. doi: 10.1186/s12932-015-0031-3 [12] KRISHNAMURTI G S R, HUANG P M. Influence of manganese oxide minerals on the formation of iron Oxides [J]. Clays and Clay Minerals, 1988, 36(5): 467-475. doi: 10.1346/CCMN.1988.0360513 [13] VILLINSKI J E, O'DAY P A, CORLEY T L, et al. In situ spectroscopic and solution analyses of the reductive dissolution of MnO2 by Fe(II) [J]. Environmental Science & Technology, 2001, 35(6): 1157-1163. [14] NESBITT H W, CANNING G W, BANCROFT G M. XPS study of reductive dissolution of 7Å-birnessite by H3AsO3, with constraints on reaction mechanism [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2097-2110. doi: 10.1016/S0016-7037(98)00146-X [15] POSTMA D, APPELO C A J. Reduction of Mn-oxides by ferrous iron in a flow system: Column experiment and reactive transport modeling [J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1237-1247. doi: 10.1016/S0016-7037(99)00356-7 [16] SIEBECKER M, MADISON A S, LUTHER G W. Reduction kinetics of polymeric (soluble) manganese (IV) oxide (MnO2) by ferrous iron (Fe2+) [J]. Aquatic Geochemistry, 2015, 21(2/3/4): 143-158. [17] POSTMA D. Concentration of Mn and separation from Fe in sediments-I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10 ℃ [J]. Geochimica et Cosmochimica Acta, 1985, 49(4): 1023-1033. doi: 10.1016/0016-7037(85)90316-3 [18] MYERS C R, NEALSON K H. Microbial reduction of manganese oxides: Interactions with iron and sulfur [J]. Geochimica et Cosmochimica Acta, 1988, 52(11): 2727-2732. doi: 10.1016/0016-7037(88)90041-5 [19] MCKENZIE R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese [J]. Mineralogical Magazine, 1971, 38(296): 493-502. doi: 10.1180/minmag.1971.038.296.12 [20] LUO Y, TAN W F, SUIB S L, et al. Dissolution and phase transformation processes of hausmannite in acidic aqueous systems under anoxic conditions [J]. Chemical Geology, 2018, 487: 54-62. doi: 10.1016/j.chemgeo.2018.04.016 [21] 罗瑶, 李珊, 谭文峰, 等. 水锰矿氧化水溶性硫化物过程及其影响因素 [J]. 环境科学, 2016, 37(4): 1539-1545. doi: 10.13227/j.hjkx.2016.04.045 LUO Y, LI S, TAN W F, et al. Oxidation process of dissolvable sulfide by manganite and its influencing factors [J]. Environmental Science, 2016, 37(4): 1539-1545(in Chinese). doi: 10.13227/j.hjkx.2016.04.045
[22] GAO T Y, SHI Y, LIU F, et al. Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems [J]. Journal of Hazardous Materials, 2015, 290: 106-116. doi: 10.1016/j.jhazmat.2015.02.018 [23] KIRILLOV S A, ALEKSANDROVA V S, LISNYCHA T V, et al. Oxidation of synthetic hausmannite (Mn3O4) to manganite (MnOOH) [J]. Journal of Molecular Structure, 2009, 928(1/2/3): 89-94. [24] RAHIMI S, MOATTARI R M, RAJABI L, et al. Iron oxide/hydroxide (α, γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media [J]. Journal of Industrial and Engineering Chemistry, 2015, 23: 33-43. doi: 10.1016/j.jiec.2014.07.039 [25] HAN X, LI Y L, GU J D. Oxidation of As(Ⅲ) by MnO2 in the absence and presence of Fe(Ⅱ) under acidic conditions [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 368-379. doi: 10.1016/j.gca.2010.10.010 [26] RICHMOND W R, LOAN M, MORTON J, et al. Arsenic removal from aqueous solution via ferrihydrite crystallization control [J]. Environmental Science & Technology, 2004, 38(8): 2368-2372. [27] CHIRIŢĂ P, DESCOSTES M, SCHLEGEL M L. Oxidation of FeS by oxygen-bearing acidic solutions [J]. Journal of Colloid and Interface Science, 2008, 321(1): 84-95. doi: 10.1016/j.jcis.2008.01.024 [28] REDDY T R, FRIERDICH A J, BEARD B L, et al. The effect of pH on stable iron isotope exchange and fractionation between aqueous Fe(Ⅱ) and goethite [J]. Chemical Geology, 2015, 397: 118-127. doi: 10.1016/j.chemgeo.2015.01.018 [29] 刘承帅, 李芳柏, 陈曼佳, 等. Fe(Ⅱ)催化水铁矿晶相转变过程中Pb的吸附与固定 [J]. 化学学报, 2017, 75(6): 621-628. doi: 10.6023/A17030093 LIU C S, LI F B, CHEN M J, et al. Adsorption and stabilization of lead during Fe(Ⅱ)-catalyzed phase transformation of ferrihydrite [J]. Acta Chimica Sinica, 2017, 75(6): 621-628(in Chinese). doi: 10.6023/A17030093
[30] SCHOTT J, BERNER R A. X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering [J]. Geochimica et Cosmochimica Acta, 1983, 47(12): 2233-2240. doi: 10.1016/0016-7037(83)90046-7 [31] ROSSO K M, MORGAN J J. Outer-sphere electron transfer kinetics of metal ion oxidation by molecular oxygen [J]. Geochimica et Cosmochimica Acta, 2002, 66(24): 4223-4233. doi: 10.1016/S0016-7037(02)01040-2 [32] KING D W. Role of carbonate speciation on the oxidation rate of Fe(II) in aquatic systems [J]. Environmental Science & Technology, 1998, 32(19): 2997-3003. [33] 李颖, 顾雪元. 土壤中锰氧化物的形态及其化学提取方法综述 [J]. 环境化学, 2022, 41(1): 9-21. doi: 10.7524/j.issn.0254-6108.2021061603 LI Y, GU X Y. Soil manganese oxides and its extraction methods: A review [J]. Environmental Chemistry, 2022, 41(1): 9-21(in Chinese). doi: 10.7524/j.issn.0254-6108.2021061603
[34] SUN Q, CUI P X, FAN T T, et al. Effects of Fe(Ⅱ) on Cd(Ⅱ) immobilization by Mn(Ⅲ)-rich δ-MnO2 [J]. Chemical Engineering Journal, 2018, 353: 167-175. doi: 10.1016/j.cej.2018.07.120 [35] 刘立虎, 樊萍, 孙学成, 等. 电化学驱动水钠锰矿高效吸附去除混合重金属离子 [J]. 环境化学, 2022, 41(2): 740-748. LIU L H, FAN P, SUN X C, et al. High-efficiency adsorption removal for multiple heavy metal ions using birnessite under electrochemical drive [J]. Environmental Chemistry, 2022, 41(2): 740-748(in Chinese).
[36] SCHAEFER M V, HANDLER R M, SCHERER M M. Fe(Ⅱ) reduction of pyrolusite (β-MnO2) and secondary mineral evolution [J]. Geochemical Transactions, 2017, 18: 7. doi: 10.1186/s12932-017-0045-0 [37] RADY O, LIU L H, YANG X, et al. Adsorption and catalytic oxidation of arsenite on Fe-Mn nodules in the presence of oxygen [J]. Chemosphere, 2020, 259: 127503. doi: 10.1016/j.chemosphere.2020.127503