-
易腐垃圾是指易腐烂的、含有大量有机物质的生活垃圾和部分农业生产废弃物,主要包括餐厨垃圾、城乡居民日常生活产生的垃圾、农贸市场产生的生鲜废弃物等,具有营养丰富,但量大、处理难度高的特点,给环境带来巨大压力[1]. 生物质的热解炭化处理在绿色低碳处理废弃生物质、应对日益严峻的固废环境污染和资源耗竭问题具有突出的优势. 热解炭化生成生物质炭可作为土壤培肥改良和环境修复的功能性材料,具有很大的资源化利用价值[2-3]. 生物质炭是生物质在无氧或限氧条件下热裂解(主要<700 ℃)产生的固体富碳产物,具有高度芳香化、稳定性好、比表面积大、孔隙结构丰富、富含植物所需的营养元素等特点[4-6]. 作为土壤改良修复材料,生物质炭可以改善土壤理化性质、增加养分、影响土壤微生物活动、缓解干旱和盐胁迫、钝化吸附土壤中的重金属和有机污染物[7]. 生物质炭的理化特性与其功能密切相关,而炭化温度和炭化原料是生物质炭结构、酸碱度等理化特性和应用功效的最主要影响因子[8-9]. 前人研究表明,生物质炭多为碱性,原料中的灰分含量越多,其制备的生物质炭pH相对越高[10-11]. 纤维基生物质炭的C含量和比表面积通常大于非纤维基生物质炭[12-13]. 随着炭化温度的升高,生物质炭的pH及C含量上升,比表面积增大,吸附作用增强,官能团丰度降低[12,14-16]. 与纤维基生物质炭相比,高灰分的畜禽粪便炭具有更高的pH,可以有效改良酸性土壤和贫瘠土壤. 简敏菲等[17]研究发现,秸秆炭C含量随炭化温度的升高而上升,而王煌平等[18]研究畜禽粪便等高灰分生物质炭发现,炭化温度的升高,C含量不变甚至下降. 随着畜禽粪便、污泥、餐厨垃圾、易腐垃圾等有机固废消纳问题的日益严重,此类非木质纤维素原料的生物质炭化研究逐渐增多. 目前,生物质炭原料主要来源于植物基的农林废弃物[17],炭化温度与原材料对生物质炭性能的影响研究往往是针对单一原料或单一温度,且制备规模以少量实验室制备为主,工厂化制备的研究较少,对实际应用有一定距离,缺少系统性、定量化关系研究. 猪粪、污泥基非植物来源,甚至是更复杂的混合有机原料,如易腐垃圾,给生物质炭的制备、理化性质和应用功效相关性研究带来了更多的不确定因素. 植物基与易腐垃圾基有机固废原料的共性分析与比较研究较少,所以有必要比较不同类型原料和炭化温度条件下,生物质炭pH、可溶性盐浓度这些土壤施用相关的理化特性,进行较为系统的因子分析.
生物质炭其理化特性因原料差异和炭化温度发生变化,350 ℃以下时,主要是半纤维素热解阶段,400—500 ℃是木质素大量降解阶段,超过500 ℃,产率趋向稳定,炭的芳香化程度和炭稳定性增强[19-20]. 因此,本文选取山核桃蒲壳、玉米秸秆和易腐垃圾为原料,在350、500、650 ℃热解温度下制备生物质炭,分析原料种类和温度对生物质炭元素组成、表面结构、pH值、可溶性盐浓度(EC)等影响土壤应用的理化特性的影响. 在较大的原料异质性条件下,探讨热解温度与生物质炭特性之间的定量关系,以期为易腐垃圾炭制备,及其农业土壤环境下的规模化应用提供依据.
炭化温度对植物基生物质炭与易腐垃圾炭的理化特性影响比较
Effects of carbonization temperature on physicochemical properties of plant-based biochar and perishable waste biochar
-
摘要: 易腐垃圾具有产量大、有机易腐性高的特点,带来严重的环境压力和资源浪费. 炭化农用是其减量化处理和资源化利用的有效途径. 本研究以山核桃蒲壳、玉米秸秆和易腐垃圾为原料在350、500、650 ℃条件下热解炭化制备生物质炭,比较植物基生物质炭与易腐垃圾炭理化特性的差异及其影响因素. 结果表明,与山核桃蒲壳炭(WSB)和玉米秸秆炭(MB)相比,易腐垃圾炭(PWB)具有碳(C)含量低,氮(N)和灰分含量高的特点. 炭化温度对其元素组成影响较弱. 当炭化温度由350 ℃升到650 ℃时,WSB和MB的C含量分别提高了24.6%和13.2%,氢碳比值(H/C)分别下降了58.7%和34.7%;而PWB的C含量变化不显著,H/C比值仅下降了18.0%. 随着炭化温度升高,生物质炭的pH值、EC、水溶性K+和Na+含量呈上升趋势. 相关性分析结果表明,灰分与C/N、C含量、水溶性K+含量呈极显著负相关,与N含量、水溶性Na+含量、pH值呈极显著正相关. 因此,高灰分含量导致易腐垃圾炭对炭化温度响应弱于植物基生物质炭,同时使易腐垃圾炭能为土壤提供更多的矿质养分.Abstract: Perishable waste has the characteristics of large output and high organic perishability, which brings serious environmental pressure and waste of resources. Agricultural application of pyrolyzed perishable waste is an effective way for its reduction treatment and resource utilization. In this study, walnut shell, maize straw and perishable waste were pyrolyzed to produce biochars at 350 ℃, 500 ℃ and 650℃, respectively. The physicochemical properties between plant-based biochar and perishable waste biochar were studied. The results showed that the perishable waste biochar (PWB) had lower carbon (C), higher nitrogen (N) and higher ash contents, compared with the walnut shell biochar (WSB) and maize straw biochar (MB). The influence of carbonization temperature on element compositions of perishable waste was weaker than that of the others. With the increasing of carbonization temperature from 350℃ to 650℃, the C contents of WSB and MB increased by 24.6% and 13.2% respectively, and the H/C ratios decreased by 58.7% and 34.7% respectively. While, there was no significant influence of temperature on the C content of PWB, except for that H/C ratio decreased by 18.0%. The pH value, EC, water-soluble K+ and Na+ content of biochars increased with the increasing of carbonization temperature. The results of correlation analysis showed that ash content was negatively correlated to the C content, C/N ratio, and water-soluble K+ content, and positively correlated to N content, water-soluble Na+ content and pH value. It suggested that high ash content is the main contributor to the weak response of perishable waste biochar to carbonization temperature, and that the perishable waste biochar can provide rich mineral nutrients for soil.
-
Key words:
- pyrolysis carbonization /
- ash /
- feedstock /
- temperature /
- perishable waste /
- physicochemical properties.
-
表 1 不同炭化温度和原料制备的生物质炭元素组成
Table 1. Element composition of biochars with different carbonization temperature and raw feedstocks
生物质炭
Biochar炭化温度/ ℃
Carbonization temperature元素组成
Elemental composition原子比
Atomic ratioC% H% O% N% 灰分Ash% O/C H/C (O+N)/C C/N WSB 350 47.68c 3.64a 34.08a 1.42d 13.18e 0.54a 0.92a 0.56a 39.21b 500 52.49b 2.28d 21.52b 1.28e 22.44d 0.31bc 0.52e 0.33c 47.96a 650 59.41a 1.88f 12.32d 1.40d 24.99cd 0.16e 0.38g 0.18e 49.43a MB 350 46.81c 2.80b 19.99b 2.12ab 28.28b 0.32bc 0.72b 0.36bc 25.76e 500 51.97b 2.40c 15.88c 2.12ab 27.63bc 0.23d 0.55d 0.26d 28.55d 650 53.01b 2.09e 15.84c 2.04bc 27.02bc 0.22d 0.47f 0.26d 30.32c PWB 350 35.16d 1.79f 12.86d 2.16a 48.02a 0.28cd 0.61c 0.33c 18.97f 500 34.13d 1.45g 15.79c 1.99c 46.64a 0.35b 0.51e 0.40b 19.99f 650 35.17d 1.45g 12.67d 2.09abc 48.61a 0.27cd 0.50ef 0.32c 19.66f 注:不同小写字母表示处理间差异显著(P<0.05). 下同.
Notes: Different lowercase letters showed significant difference among treatments (P < 0.05). The same below.表 2 生物质炭各指标的相关性分析
Table 2. Correlation analysis of physicochemical properties of biochars
指标
IndexC N O (O+N)/C O/C H/C C/N Na+ K+ Ash pH EC Ash -0.819** 0.641** -0.693** -0.182 -0.287 -0.377 -0.783** 0.934** -0.522** 1 pH -0.077 0.214 -0.854** -0.757** -0.789** -0.924** -0.119 0.466* -0.063 0.565** 1 EC 0.332 0.442* -0.393* -0.534** -0.537** -0.251 -0.127 0.146 0.851** -0.038 0.145 1 注: *和**分别表示在P<0.05水平显著相关和P<0.01水平极显著相关.
Notes: * and ** indicate significant correlation at P<0.05 and extremely significant correlation at P<0.01 respectively. -
[1] 安晓霞, 邵建越, 郑学娟, 等. 浅谈国内易腐垃圾生物处置现状、问题与对策 [J]. 中国资源综合利用, 2020, 38(2): 99-104,137. AN X X, SHAO J Y, ZHENG X J, et al. Discussion on status, problems and countermeasures of biological treatment of perishable waste in China [J]. China Resources Comprehensive Utilization, 2020, 38(2): 99-104,137(in Chinese).
[2] 潘根兴, 卞荣军, 程琨. 从废弃物处理到生物质制造业: 基于热裂解的生物质科技与工程 [J]. 科技导报, 2017, 35(23): 82-93. PAN G X, BIAN R J, CHENG K. From biowaste treatment to novel bio-material manufacturing: Biomaterial science and technology based on biomass pyrolysis [J]. Science & Technology Review, 2017, 35(23): 82-93(in Chinese).
[3] ELKHALIFA S, AL-ANSARI T, MACKEY H R, et al. Food waste to biochars through pyrolysis: A review [J]. Resources, Conservation and Recycling, 2019, 144: 310-320. doi: 10.1016/j.resconrec.2019.01.024 [4] 单胜道, 潘根兴, 施赟, 等. 生物质炭科技与工程[M]. 北京: 科学出版社, 2021. SHAN S D, PAN G X. SHI Y, et al.Biochar Technology and Engineering [M]. Beijing: Science Press, 2021(in Chinese).
[5] BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L, et al. A review of biochars'potential role in the remediation, revegetation and restoration of contaminated soils [J]. Environmental Pollution, 2011, 159(12): 3269-3282. doi: 10.1016/j.envpol.2011.07.023 [6] 孔丝纺, 姚兴成, 张江勇, 等. 生物质炭的特性及其应用的研究进展 [J]. 生态环境学报, 2015, 24(4): 716-723. KONG S F, YAO X C, ZHANG J Y, et al. Review of characteristics of biochar and research progress of its applications [J]. Ecology and Environmental Sciences, 2015, 24(4): 716-723(in Chinese).
[7] GUO X X, LIU H T, ZHANG J. The role of biochar in organic waste composting and soil improvement: A review [J]. Waste Management, 2020, 102: 884-899. doi: 10.1016/j.wasman.2019.12.003 [8] TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects [J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 191-215. doi: 10.1007/s11157-020-09523-3 [9] 朱启林, 曹明, 张雪彬, 等. 不同热解温度下禾本科植物生物炭理化特性分析 [J]. 生物质化学工程, 2021, 55(4): 21-28. doi: 10.3969/j.issn.1673-5854.2021.04.004 ZHU Q L, CAO M, ZHANG X B, et al. Physicochemical and infrared spectroscopic properties of Gramineae plants biochar at different pyrolysis temperatures [J]. Biomass Chemical Engineering, 2021, 55(4): 21-28(in Chinese). doi: 10.3969/j.issn.1673-5854.2021.04.004
[10] SINGH B, SINGH B P, COWIE A L. Characterisation and evaluation of biochars for their application as a soil amendment [J]. Australian Journal of Soil Research, 2010, 48(7): 516-525. doi: 10.1071/SR10058 [11] University of California. Davis. UC Davis Biochar Database[DB/OL]. [2022-01-03]. [12] 袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望 [J]. 植物营养与肥料学报, 2016, 22(5): 1402-1417. YUAN S, ZHAO L X, MENG H B, et al. The main types of biochar and their properties and expectative researches [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1402-1417(in Chinese).
[13] YAVARI S, MALAKAHMAD A, SAPARI N B. Biochar efficiency in pesticides sorption as a function of production variables-a review [J]. Environmental Science and Pollution Research International, 2015, 22(18): 13824-13841. doi: 10.1007/s11356-015-5114-2 [14] 张伟明, 修立群, 吴迪, 等. 生物炭的结构及其理化特性研究回顾与展望 [J]. 作物学报, 2021, 47(1): 1-18. doi: 10.3724/SP.J.1006.2021.02021 ZHANG W M, XIU L Q, WU D, et al. Review of biochar structure and physicochemical properties [J]. Acta Agronomica Sinica, 2021, 47(1): 1-18(in Chinese). doi: 10.3724/SP.J.1006.2021.02021
[15] KIM K H, KIM J Y, CHO T S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) [J]. Bioresource Technology, 2012, 118: 158-162. doi: 10.1016/j.biortech.2012.04.094 [16] LI H B, DONG X L, da SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications [J]. Chemosphere, 2017, 178: 466-478. doi: 10.1016/j.chemosphere.2017.03.072 [17] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响 [J]. 环境科学学报, 2016, 36(5): 1757-1765. JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw [J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765(in Chinese).
[18] 王煌平, 张青, 章赞德, 等. 不同热解温度限氧制备的畜禽粪便生物炭养分特征 [J]. 农业工程学报, 2018, 34(20): 233-239. WANG H P, ZHANG Q, ZHANG Z D, et al. Nutrient characteristics of biochar prepared from animal manures at different temperature with limited oxygen [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 233-239(in Chinese).
[19] 谭洪, 张磊, 韩玉阁. 不同种类生物质热解炭的特性实验研究 [J]. 生物质化学工程, 2009, 43(5): 31-34. TAN H, ZHANG L, HAN Y G. Experimental research on the characterization of char product from biomass pyrolysis [J]. Biomass Chemical Engineering, 2009, 43(5): 31-34(in Chinese).
[20] 彭云云, 武书彬. TG-FTIR联用研究半纤维素的热裂解特性 [J]. 化工进展, 2009, 28(8): 1478-1484. PENG Y Y, WU S B. Characteristics and kinetics of sugarcana bagasse hemicellulose pyrolysis by TG-FTIR [J]. Chemical Industry and Engineering Progress, 2009, 28(8): 1478-1484(in Chinese).
[21] JASSAL R S, JOHNSON M S, MOLODOVSKAYA M, et al. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality [J]. Journal of Environmental Management, 2015, 152: 140-144. [22] 赵越, 赵保卫, 刘辉, 等. 热解温度对生物炭理化性质和吸湿性的影响 [J]. 环境化学, 2020, 39(7): 2005-2012. doi: 10.7524/j.issn.0254-6108.2019050401 ZHAO Y, ZHAO B W, LIU H, et al. Effect of pyrolysis temperature on physicochemical properties and hygroscopicity of biochar [J]. Environmental Chemistry, 2020, 39(7): 2005-2012(in Chinese). doi: 10.7524/j.issn.0254-6108.2019050401
[23] 姚红宇, 唐光木, 葛春辉, 等. 炭化温度和时间与棉杆炭特性及元素组成的相关关系 [J]. 农业工程学报, 2013, 29(7): 199-206. YAO H Y, TANG G M, GE C H, et al. Characteristics and elementary composition of cotton stalk-char in different carbonization temperature and time [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 199-206(in Chinese).
[24] 王琬丽, 孙锴, 黄群星, 等. 无机灰分对餐厨沼渣中有机质热解特性的影响 [J]. 浙江大学学报(工学版), 2021, 55(9): 1652-1659. WANG W L, SUN K, HUANG Q X, et al. Effect of inorganic ash on pyrolysis characteristics of organic matter of biogas residue from food waste [J]. Journal of Zhejiang University (Engineering Science), 2021, 55(9): 1652-1659(in Chinese).
[25] 赵金凤, 陈静文, 张迪, 等. 玉米秸秆和小麦秸秆生物炭的热稳定性及化学稳定性 [J]. 农业环境科学学报, 2019, 38(2): 458-465. ZHAO J F, CHEN J W, ZHANG D, et al. Thermal stability and oxidation resistance of biochars derived from corn stalk and wheat stalk [J]. Journal of Agro-Environment Science, 2019, 38(2): 458-465(in Chinese).
[26] ZORNOZA R, MORENO-BARRIGA F, ACOSTA J A, et al. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments [J]. Chemosphere, 2016, 144: 122-130. doi: 10.1016/j.chemosphere.2015.08.046 [27] 陈昱, 梁媛, 郑章琪, 等. 浮萍生物炭的老化作用对其性质及对Cd(Ⅱ)吸附的影响 [J]. 环境工程, 2016, 34(10): 60-64. CHEN Y, LIANG Y, ZHENG Z Q, et al. Influnce of biochar ageing on its properties and Cd(Ⅱ) adsorption [J]. Environmental Engineering, 2016, 34(10): 60-64(in Chinese).
[28] 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响 [J]. 环境化学, 2016, 35(8): 1663-1669. doi: 10.7524/j.issn.0254-6108.2016.08.2016010607 GAO K F, JIAN M F, YU H P, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk [J]. Environmental Chemistry, 2016, 35(8): 1663-1669(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016010607
[29] FANG Q L, CHEN B L, LIN Y J, et al. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups [J]. Environmental Science & Technology, 2014, 48(1): 279-288. [30] 孙克静, 张海荣, 唐景春. 不同生物质原料水热生物炭特性的研究 [J]. 农业环境科学学报, 2014, 33(11): 2260-2265. doi: 10.11654/jaes.2014.11.027 SUN K J, ZHANG H R, TANG J C. Properties of hydrochars from different sources of biomass feedstock [J]. Journal of Agro-Environment Science, 2014, 33(11): 2260-2265(in Chinese). doi: 10.11654/jaes.2014.11.027
[31] 石林, 陈静文, 李浩, 等. 滇池沉积物生物炭的热稳定性及化学稳定性特征 [J]. 环境化学, 2018, 37(11): 2515-2521. doi: 10.7524/j.issn.0254-6108.2018062202 SHI L, CHEN J W, LI H, et al. Thermal and chemical stability of biochars derived from sediment in Dianchi Lake [J]. Environmental Chemistry, 2018, 37(11): 2515-2521(in Chinese). doi: 10.7524/j.issn.0254-6108.2018062202
[32] 闫代红, 马亚培, 宋凯悦, 等. 原料和热解温度对生物炭中可溶性有机质的影响 [J]. 环境科学, 2021, 42(10): 5030-5036. YAN D H, MA Y P, SONG K Y, et al. Effects of feedstock material and pyrolysis temperature on dissolved organic matter in biochars [J]. Environmental Science, 2021, 42(10): 5030-5036(in Chinese).
[33] IRFAN M, CHEN Q, YUE Y, et al. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L. ) under three different pyrolysis temperatures [J]. Bioresource Technology, 2016, 211: 457-463. doi: 10.1016/j.biortech.2016.03.077 [34] SONG W P, GUO M X. Quality variations of poultry litter biochar generated at different pyrolysis temperatures [J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 138-145. doi: 10.1016/j.jaap.2011.11.018 [35] KUMAR G, SHOBANA S, CHEN W H, et al. A review of thermochemical conversion of microalgal biomass for biofuels: Chemistry and processes [J]. Green Chemistry, 2017, 19(1): 44-67. doi: 10.1039/C6GC01937D [36] SMIDER B, SINGH B. Agronomic performance of a high ash biochar in two contrasting soils [J]. Agriculture, Ecosystems & Environment, 2014, 191: 99-107. [37] SINGH B, ARBESTAIN M C, LEHMANN J. Biochar: A Guide to Analytical Methods[M]. Clayton, Vic: CSIRO Publishing, 2017. [38] MCBEATH A V, SMERNIK R J, KRULL E S, et al. The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study [J]. Biomass and Bioenergy, 2014, 60: 121-129. doi: 10.1016/j.biombioe.2013.11.002 [39] 陈必鸣. 餐厨垃圾预处理技术综述 [J]. 环境卫生工程, 2015, 23(5): 10-12. CHEN B M. Food waste pretreatment technologies [J]. Environmental Sanitation Engineering, 2015, 23(5): 10-12(in Chinese).
[40] 焦敏娜, 任秀娜, 王权, 等. 垃圾分类背景下易腐有机垃圾资源化处理模式探讨 [J]. 环境卫生工程, 2022, 30(1): 28-35,40. JIAO M N, REN X N, WANG Q, et al. Discussion on the recycling treatment mode of perishable organic waste under the background of waste classification [J]. Environmental Sanitation Engineering, 2022, 30(1): 28-35,40(in Chinese).
[41] LIU M, OGUNMOROTI A, LIU W, et al. Assessment and projection of environmental impacts of food waste treatment in China from life cycle perspectives [J]. Science of the Total Environment, 2022, 807: 150751. doi: 10.1016/j.scitotenv.2021.150751 [42] 施庆文. 上海市湿垃圾处理运营补贴政策研究 [J]. 环境与可持续发展, 2021, 46(3): 195-197. SHI Q W. Research on the subsidy policy of wet waste treatment process operation in Shanghai [J]. Environment and Sustainable Development, 2021, 46(3): 195-197(in Chinese).
[43] 吕凡, 章骅, 郝丽萍, 等. 易腐垃圾就近就地处理技术浅析 [J]. 环境卫生工程, 2020, 28(5): 1-7. doi: 10.19841/j.cnki.hjwsgc.2020.05.001 LÜ F, ZHANG H, HAO L P, et al. Analysis on the treatment technology of organic fraction of municipal solid waste in the neighborhood or on-site [J]. Environmental Sanitation Engineering, 2020, 28(5): 1-7(in Chinese). doi: 10.19841/j.cnki.hjwsgc.2020.05.001