-
四溴双酚A(TBBPA)是一种溴代阻燃剂,由于其具有高阻燃性和低廉价格等特点,广泛应用于电子电器产品、家具、油漆、纺织品等日用品中. TBBPA在生产和使用过程中可通过多种途径进入环境. 研究表明,TBBPA具有持久性有机污染物的特征,具有生物累积性、高度亲脂性和难分解性,具有内分泌干扰效应、细胞和神经毒性、免疫毒性等,会对生态系统和人类健康构成严重的威胁[1-4]. TBBPA微溶于水且容易在土壤中聚集,土壤是TBBPA最重要的归宿之一. 近年来,如何有效降解和去除土壤中TBBPA的研究备受关注 .
目前,土壤有机污染物修复技术包括物理修复[5]、生物修复[6-8]和化学修复[9-10],其中化学修复因其低投资、高效率、实施周期短的优点应用广泛. 过硫酸盐(PS)高级氧化技术是最常用的一种化学氧化修复技术,该技术的关键是通过热[11]、紫外光[12]和通过添加过渡金属[13]等方式活化PS. 热活化PS体系中虽然操作简单,但能耗较高,不适用大规模的处理. 在过渡金属活化PS中,亚铁离子(Fe2+)和铁离子(Fe3+)由于含量丰富、环境友好、价格低廉而被广泛用于PS活化,然而Fe2+活化PS技术仍然有一些缺陷,过量的Fe2+会抑制PS的活化,Fe3+还原为Fe2+的速率较慢,难以控制氧化体系中的量[14].
为了提高PS活化性能,本文以典型溴代阻燃剂TBBPA为目标污染物,考虑将Fe2+活化与热活化结合,采用Fe2+耦合热活化PS处理土壤中TBBPA,考察温度、Fe2+初始浓度、PS浓度、初始pH、无机阴离子和其他金属离子对Fe2+/热/PS体系降解TBBPA的影响,以寻求土壤体系中TBBPA降解的最佳反应条件,为土壤中持久性有机污染物的修复提供依据.
Fe2+耦合热活化过硫酸盐降解土壤中四溴双酚A
Degradation of tetrabromobisphenol A by ferrous coupling thermally activated persulfate in soil
-
摘要: 有效降解和去除土壤中四溴双酚A(TBBPA)是土壤环境化学研究热点. 本文研究了Fe2+耦合热活化过硫酸盐体系(Fe2+/热/PS)对土壤中TBBPA的降解,并考察温度、Fe2+初始浓度、PS浓度、初始pH值、无机阴离子(Cl−、
${\rm{HCO}}_3^{-} $ )浓度以及金属离子(Cu2+、Zn2+、Ni2+)浓度的影响. 结果表明,Fe2+/热/PS降解TBBPA的效果远高于同等条件下单一热活化和Fe2+活化的情况;提高温度和PS浓度能够促进土壤TBBPA的降解;而过量的亚铁离子会导致TBBPA去除率下降,Fe2+与PS的最佳摩尔比为0.5 : 1;Fe2+耦合热活化PS体系具有较宽的pH应用范围, 在酸性条件下更有利于降解;温度55 ℃、Fe2+浓度25 mmol·L−1、PS浓度50 mmol·L−1、pH=3下,土壤TBBPA初始浓度为20 mg·kg−1,培养12 h,土壤TBBPA的降解效率达到了100%;低浓度Cl−对Fe2+/热/PS体系的影响不显著,高浓度的Cl−会促进TBBPA的降解,而${\rm{HCO}}_3^{-} $ 在研究浓度范围内均呈现抑制作用;Cu2+和Ni2+对Fe2+/热/PS体系均表现出较好的促进作用,而随着Zn2+浓度的增加,TBBPA的降解速率呈现出先减小后增大的变化.Abstract: Degradation and removal of tetrabromobisphenol A (TBBPA) from soil is a hot topic in soil environmental chemistry research. In this study, the degradation of tetrabromobisphenol A(TBBPA) by ferrous coupling thermally activated persulfate system (Fe2+/heat/PS) in soil was investigated. The effects of temperature, initial Fe2+ concentration, PS concentration, initial pH, inorganic anions (Cl−, HCO3−) concentration and other metal ions (Cu2+, Zn2+, Ni2+) concentration were also evaluated. The results showed that the degradation rate of TBBPA by Fe2+/heat/PS was much more effective than that the single thermal activation or Fe2+ activation under the same conditions; TBBPA removing effect was found to be enhanced through increasing the temperature and PS concentration; Excess amount of ferrous ion would lead to the declination of TBBPA removal efficiency and the optimal molar ratio of Fe2+/PS was 0.5:1; Fe2+ coupling thermally activated PS system has a wide range of pH applications and the TBBPA was more conducive to degraded under acidic conditions; The degradation efficiency of soil TBBPA reached 100% for 12 hours when the initial concentration of soil TBBPA was 20 mg·kg−1 at 55 ℃, Fe2+ concentration 25 mmol·L−1, PS concentration 50 mmol·L−1 and pH=3; Cl− has dual effect on the removal of TBBPA in the Fe2+/heat/PS system, which inhibited the degradation of TBBPA at low concentrations but promoted it at high concentrations, both HCO3− had an obvious inhibition effect on the degradation of TBBPA. Cu2+ and Ni2+ promoted the degradation of TBBPA by Fe2+/heat/PS system, and the degradation rate of TBBPA decreased first and then increased with the increase of Zn2+ concentration.-
Key words:
- tetrabromobisphenol A /
- homogeneous catalyst /
- ferrous /
- persulfate /
- advanced oxidation
-
表 1 土壤基本理化性质
Table 1. Basic physicochemical properties of soil
pH 孔隙比
Porosity ratio饱和度/%
Saturation颗粒成分组成/%
Particle composition<0.005 mm 0.005—0.075 mm 0.075—0.25 mm 0.25—0.5 mm 7.10 1.50 95.1 13.3 17.7 47.7 21.3 表 2 单因素实验参数变量
Table 2. One-way experimental parameter variables
单因素名称
Single factor name参数变量
Parameter variable温度/℃ 25 35 45 55 65 PS浓度/(mmol·L−1) 15 25 50 70 100 Fe2+浓度/(mmol·L−1) 15 25 50 70 100 初始pH 3.0 5.0 7.0 9.0 — PS与无机阴离子浓度摩尔比 1:0.1 1:1 1:2 — — Fe2+与其他金属离子浓度摩尔比 1:0.1 1:1 1:2 — — -
[1] GAO C J, XIA L L, WU C C, et al. The effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of hexabromocyclododecanes and tetrabromobisphenol A in surface soil in South China [J]. Environmental Pollution, 2019, 252: 1810-1818. doi: 10.1016/j.envpol.2019.06.128 [2] ALI N, HARRAD S, GOOSEY E, et al. “Novel” brominated flame retardants in Belgian and UK indoor dust: Implications for human exposure [J]. Chemosphere, 2011, 83(10): 1360-1365. doi: 10.1016/j.chemosphere.2011.02.078 [3] BIRNBAUM L S, STASKAL D F. Brominated flame retardants: Cause for concern? [J]. Environmental Health Perspectives, 2004, 112(1): 9-17. doi: 10.1289/ehp.6559 [4] ZHANG K L, HUANG J, ZHANG W, et al. Mechanochemical degradation of tetrabromobisphenol A: Performance, products and pathway [J]. Journal of Hazardous Materials, 2012, 243: 278-285. doi: 10.1016/j.jhazmat.2012.10.034 [5] LABADIE P, TLILI K, ALLIOT F, et al. Development of analytical procedures for trace-level determination of polybrominated diphenyl ethers and tetrabromobisphenol A in river water and sediment [J]. Analytical and Bioanalytical Chemistry, 2010, 396(2): 865-875. doi: 10.1007/s00216-009-3267-x [6] LIU J, WANG Y F, JIANG B Q, et al. Degradation, metabolism, and bound-residue formation and release of Tetrabromobisphenol A in soil during sequential anoxic-oxic incubation [J]. Environmental Science & Technology, 2013, 47(15): 8348-8354. [7] SUN F F, KOLVENBACH B A, NASTOLD P, et al. Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems [J]. Environmental Science & Technology, 2014, 48(24): 14291-14299. [8] 付真真. 污泥菌剂厌氧降解四溴双酚A[D]. 大连: 大连理工大学, 2013. FU Z Z. Anaerobic degradation of tetrabromobisphenol-a by sludge bacterial agent[D]. Dalian: Dalian University of Technology, 2013(in Chinese).
[9] 付欣. 零价纳米铁铜双金属(Cu/nZVI)对土壤中四溴双酚A和四氯双酚A的降解研究[D]. 广州: 华南理工大学, 2016. FU X. The degradation of tetrabromobisphenol A and tetrachlorobisphenol A in soils by copper/nanoscale zero-valent iron(Cu/nZVI) bimetallic particles[D]. Guangzhou: South China University of Technology, 2016(in Chinese).
[10] YUAN X H, LI T L, HE Y Y, et al. Degradation of TBBPA by nZVI activated persulfate in soil systems [J]. Chemosphere, 2021, 284: 131166. doi: 10.1016/j.chemosphere.2021.131166 [11] REZA SAMARGHANDI M, TARI K, SHABANLOO A, et al. Synergistic degradation of acid blue 113 dye in a thermally activated persulfate (TAP)/ZnO-GAC oxidation system: Degradation pathway and application for real textile wastewater [J]. Separation and Purification Technology, 2020, 247: 116931. doi: 10.1016/j.seppur.2020.116931 [12] 李阳, 许玻珲, 邓琳, 等. 紫外活化过硫酸盐降解磷酸氯喹[J]. 环境科学, 2022, 43(9): 4597-4607. LI Y, XU B H, DENG L, et al. Degradation of chloroquine phosphate by UV-activated persulfate[J]. Environmental Science, 2022, 43(9): 4597-4607(in Chinese).
[13] ZHENG X X, NIU X J, ZHANG D Q, et al. Removal of Microcystis aeruginosa by natural pyrite-activated persulfate: Performance and the significance of iron species [J]. Chemical Engineering Journal, 2022, 428: 132565. doi: 10.1016/j.cej.2021.132565 [14] RAO Y F, QU L, YANG H S, et al. Degradation of carbamazepine by Fe(II)-activated persulfate process [J]. Journal of Hazardous Materials, 2014, 268: 23-32. doi: 10.1016/j.jhazmat.2014.01.010 [15] ZHOU Y Y, XIANG Y J, HE Y Z, et al. Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds [J]. Journal of Hazardous Materials, 2018, 359: 396-407. doi: 10.1016/j.jhazmat.2018.07.083 [16] CHEN K F, KAO C M, WU L C, et al. Methyl tert-butyl ether (MTBE) degradation by ferrous ion-activated persulfate oxidation: Feasibility and kinetics studies [J]. Water Environment Research:a Research Publication of the Water Environment Federation, 2009, 81(7): 687-694. doi: 10.2175/106143008X370539 [17] PENG H J, ZHANG W, LIU L, et al. Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil [J]. Chemical Engineering Journal, 2017, 307: 750-755. doi: 10.1016/j.cej.2016.08.129 [18] CHEN J B, QIAN Y J, LIU H M, et al. Oxidative degradation of diclofenac by thermally activated persulfate: Implication for ISCO [J]. Environmental Science and Pollution Research International, 2016, 23(4): 3824-3833. doi: 10.1007/s11356-015-5630-0 [19] AHMAD A, GU X G, LI L, et al. Effects of pH and anions on the generation of reactive oxygen species (ROS) in nZVI-rGo-activated persulfate system [J]. Water, Air, & Soil Pollution, 2015, 226(11): 1-12. [20] LUTZE H V, BIRCHER S, RAPP I, et al. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter [J]. Environmental Science & Technology, 2015, 49(3): 1673-1680. [21] WANG Z H, YUAN R X, GUO Y G, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: Kinetic analysis [J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 1083-1087. [22] 娄晓祎. 无机阴离子活化过硫酸盐氧化降解典型有机污染物的研究[D]. 上海: 东华大学, 2016. LOU X Y. Inorganic anions mediated persulfate activation for degradation of typical organic pollutants in wastewater[D]. Shanghai: Donghua University, 2016(in Chinese).
[23] NIE W S, MAO Q H, DING Y B, et al. Highly efficient catalysis of chalcopyrite with surface bonded ferrous species for activation of peroxymonosulfate toward degradation of bisphenol A: A mechanism study [J]. Journal of Hazardous Materials, 2019, 364: 59-68. doi: 10.1016/j.jhazmat.2018.09.078 [24] LIU C S, SHIH K, SUN C X, et al. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate [J]. The Science of the Total Environment, 2012, 416: 507-512. doi: 10.1016/j.scitotenv.2011.12.004 [25] XIAN G, KONG S Y, LI Q G, et al. Synthesis of spinel ferrite MFe2O4 (M = Co, Cu, Mn, and Zn) for persulfate activation to remove aqueous organics: Effects of M-site metal and synthetic method [J]. Frontiers in Chemistry, 2020, 8: 177. doi: 10.3389/fchem.2020.00177