-
氯苯(chlorobenzene,CB)是最简单的氯芳烃,自19世纪合成以来,即大量用于生产DDT,至今,氯苯依然是年产量超过100万磅的高产量化学品[1]. 环境中的氯苯大多来源于人类的工业活动,据报道,美国氯苯类化合物的环境排放量可达到每年980吨[2]. 氯苯在自然界中的降解速度较慢,具有很强的生物积累性和生物毒性,有研究显示氯苯除了对中枢神经系统和呼吸系统有影响之外,还可造成肾脏和肝脏的损伤[3].
目前已经有很多研究者关注到氯苯的无害化处理问题,传统的氯苯处理方法主要包括吸附法、生物降解法和化学氧化法. 这些方法大多具有二次污染、效率低、选择性差等特点. 基于单过硫酸盐化合物(PMS)的高级氧化技术因其高氧化效率在降解氯代有机污染物的过程中表现出了优异的性能. 许多研究结果表明,钴氧化物(CoO、CoO2、Co2O3、CoO(OH)、Co3O4)具有活化PMS的良好能力,但单钴氧化物的比表面积非常低,以团聚,导致活性位有限,显著抑制其催化活性[4]. 有研究表明通过将钴氧化物分散在多孔材料的孔道中,可以将活性金属限域在特定孔结构中,从而使活性金属实现高度分散,这种方法可以极大提高钴基材料的催化活性[5]. SBA-15具有较高的比表面积、稳定的结构和有序的孔径,是一种良好的催化剂载体. 由于金属盐与模板剂之间的强相互作用,通过固相研磨法将金属盐与未去除模板的SBA-15充分混合之后,经过焙烧可以得到高金属分散度的催化剂. 因此,在本研究中,采用固相研磨法合成催化剂CoOx@SBA-15,并对其活化PMS降解氯苯的性能进行测试,并进一步探究反应中的各种因素对反应活性的影响机制及反应体系的主要活性物种.
SBA-15限域的CoOx催化过硫酸盐降解水中氯苯的机制研究
CoOx confined in SBA-15 as the highly effective catalyst to activate peroxymonosulfate for chlorobenzene degradation
-
摘要: 以中孔SBA-15为载体采用固相研磨法合成限域型催化剂CoOx@SBA-15,采用传统浸渍法合成负载型催化剂CoOx/SBA-15和CoOx/SiO2作为对比. 利用X射线衍射(XRD)、透射电子显微镜测试(TEM)等表征技术对催化剂的结构和组成进行分析,并对催化剂活化PMS降解氯苯的性能进行了研究. 结果表明,CoOx@SBA-15具有更高的催化活性,氯苯的降解反应受氯苯和PMS在催化剂表面吸附控制,CoOx@SBA-15/PMS/CB催化体系中的主要活性物种为
$ \mathrm{S}{\mathrm{O}}_{4}^{·-} $ 和1O2.-
关键词:
- CoOx@SBA-15 /
- 氯苯降解 /
- PMS活化 /
- 限域催化剂.
Abstract: Supported Co catalysts on SBA-15 were prepared using a solid-state reaction between Co(NO3)2 and organic template-occluded SBA-15. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, H2 temperature-programmed reduction and Transmission Electron Microscope (TEM). Catalytic activities of the catalysts were investigated by activating PMS for chlorobenzene degradation. The results showed that CoOx@SBA-15 had a higher activity than other catalysts. The degradation of chlorobenzene on catalyst followed the Langmuir-Hinshelwood model, reflecting that the activation of adsorbed PMS was the rate controlling step. EPR results showed that the main active species involved in the catalytic system CoOx@SBA-15/PMS/CB were$ \mathrm{S}{\mathrm{O}}_{4}^{·-} $ and 1O2.-
Key words:
- PMS activation /
- chlorobenzene degradation /
- CoOx@SBA-15 /
- confinement atalysts
-
表 1 SBA-15及钴基催化剂的结构参数
Table 1. Structural parameters of SBA-15 and Cobalt-based catalyst
样品
SampleSBETa/(m2·g−1) Smicrob/(m2·g−1) Vtc/(cm3·g−1) Vmicrob/(cm3·g−1) DBJHd/nm SBA-15 744 75 1.10 0.051 6.68 CoOx(14.14)@SBA-15 430 38 0.68 0.024 6.70 CoOx(16.66)/SBA-15 552 69 0.82 0.045 6.80 a calculated by Brunauer-Emmett-Teller (BET) method;b calculated by t-plot method;c obtained at P/P0=0.995;d from BJH method. -
[1] KOWALSKY E S, JENNINGS A A. Worldwide regulatory guidance values for chlorinated benzene surface soil contamination [J]. Journal of Environmental Engineering, 2012, 138(11): 1085-1105. doi: 10.1061/(ASCE)EE.1943-7870.0000574 [2] MALCOLM H. Chlorobenzenes other than hexachlorobenzene: Environmental aspects [Z]. 2004 [3] National Center for Biotechnology Information. Pubchem compound summary for CID 7964, Chlorobenzene [Z]. 2022. [4] LIU X H, YI R, ZHANG N, et al. Cobalt hydroxide nanosheets and their thermal decomposition to cobalt oxide nanorings [J]. Chemistry - an Asian Journal, 2008, 3(4): 732-738. doi: 10.1002/asia.200700264 [5] WANG Y , WU Z , SHI L , et al. Rapid functionalization of mesoporous materials: Directly dispersing metal oxides into as-prepared SBA-15 occluded with template [J]. Advanced Materials, 2005, 17(3): 323-327. doi: 10.1002/adma.200400860 [6] NING X, LU Y Y, FU H Y, et al. Template-mediated Ni(II) dispersion in mesoporous SiO2 for preparation of highly dispersed Ni catalysts: Influence of template type [J]. ACS Applied Materials & Interfaces, 2017, 9(22): 19335-19344. [7] ZHAO D, FENG J, HUO Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279(5350): 548-552. doi: 10.1126/science.279.5350.548 [8] PARK K S, SARAVANAN K, PARK S J, et al. Effects of CO2 on the deactivation behaviors of Co/Al2O3 and Co/SiO2 in CO hydrogenation to hydrocarbons [J]. Catalysis Science & Technology, 2017, 7(18): 4079-4091. [9] ZHAN H J, XIA Q H, LU X H, et al. Selective epoxidation of styrene with air catalyzed by CoOx and CoOx/SiO2 without any reductant [J]. Catalysis Communications, 2007, 8(10): 1472-1478. doi: 10.1016/j.catcom.2006.12.026 [10] LIU H M, LI Y M, WU H, et al. Effects of β-cyclodextrin modification on properties of Ni/SBA-15 and its catalytic performance in carbon dioxide reforming of methane [J]. Catalysis Communications, 2012, 28: 168-173. doi: 10.1016/j.catcom.2012.08.035 [11] VISWANATHAN B, GOPALAKRISHNAN R. Effect of support and promoter in Fischer-Tropsch cobalt catalysts [J]. Journal of Catalysis, 1986, 99(2): 342-348. doi: 10.1016/0021-9517(86)90359-3 [12] ZHANG X Y, GUAN Y Y, XIONG Y, et al. Nitrous oxide decomposition over Co/SBA-15 catalysts: The influence of metal loading, cobalt precursor, and solvent effect [J]. Materials Research Innovations, 2016, 20(7): 487-494. doi: 10.1179/1433075X15Y.0000000062 [13] CHEN W, FAN Z L, PAN X L, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst [J]. Journal of the American Chemical Society, 2008, 130(29): 9414-9419. doi: 10.1021/ja8008192 [14] ILINITCH O M, CUPERUS F P, NOSOVA L V, et al. Catalytic membrane in reduction of aqueous nitrates: Operational principles and catalytic performance [J]. Catalysis Today, 2000, 56(1/2/3): 137-145. [15] TAN C Q, GAO N Y, DENG Y, et al. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate [J]. Journal of Hazardous Materials, 2014, 276: 452-460. doi: 10.1016/j.jhazmat.2014.05.068 [16] HUANG Y F, HUANG Y H. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process [J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 418-426. [17] CANO M, QUINTANA J, JULIÁ L, et al. Trapping of cyclopropenyl radicals by 5, 5-dimethyl-1-pyrroline-N-oxide [J]. The Journal of Organic Chemistry, 1999, 64(14): 5096-5099. doi: 10.1021/jo9900026 [18] QIN X, FANG S W, ZHAO L, et al. Cobalt super-microparticles anchored on nitrogen-doped graphene for aniline oxidation based on sulfate radicals [J]. Science of the Total Environment, 2017, 601/602: 99-108. doi: 10.1016/j.scitotenv.2017.05.198