-
垃圾焚烧飞灰(以下简称“飞灰”)和纳滤膜浓缩液均是生活垃圾无害化处理过程中产生的二次污染物,两者的无害化处置和资源化利用已成为当前环境主管部门需要迫切解决的难题. 飞灰通常含有高浸出浓度的重金属及痕量二噁英等污染物[1],已被列为危险废物. 飞灰若处置不当,会对环境和人体健康造成潜在危害[2-3]. 目前,我国飞灰主要处置方式是经过固化稳定化进入生活垃圾填埋场填埋,但重金属仍存在再度浸出的风险[4-5],而且北京、上海、江苏、浙江等经济发达省市诸多填埋场将面临封场,飞灰填埋面临着比较严峻的形势[6]. 而国内比较成熟的利用方式是水泥窑协同处置[7-8],但处置量有限,满足不了大量飞灰的消纳需求.
纳滤膜浓缩液是生活垃圾渗滤液膜法处理产生的高浓废水,其具有含盐量高、难降解有机物多、可生化性差等特点,难以生化处理[9-10]. 目前,纳滤膜浓缩液主要回灌生活垃圾填埋场[11],而深度处理技术包括高级氧化法[12]和蒸发[13]等,但这些技术的工业化应用多不能稳定运行,且产生二次固体废物也较难得到妥善处置,环境安全隐患仍较大. 鉴于此,本课题组利用飞灰比表面积大、吸附截留性能好的特性,结合热处理方法,提出了飞灰与纳滤膜浓缩液淋滤飞灰协同处置模式,通过协同处置去除纳滤膜浓缩液的色度、难生化降解有机污染物等特征污染物,实现了纳滤膜浓缩液从目前技术工艺“难处置的高浓度有机废水”变成“可处置的高盐废水”,同时去除了飞灰中可溶性氯盐,淋滤灰渣可经热处理后实现无害化与资源化利用[14]. 目前,国内外关于飞灰高温热处理过程中重金属的固化与挥发机制的研究报道很多[15-16],但关于纳滤膜浓缩液淋滤灰渣热处理过程中重金属的迁移特性尚无报道. 由于飞灰经纳滤膜浓缩液淋滤后去除了其中的Cl−,但增加了SO42−和PO43−等,可能影响后续热处理过程中重金属的迁移化特性.
飞灰中Pb含量通常较高,是一种典型的重金属,对人体会造成致癌健康风险[17]. 本课题组[18]前期研究表明,飞灰中Pb主要为PbO,少量以PbCl2形式存在,这些Pb在后续的热处理过程较易挥发. 孟棒棒[19]对膜浓缩液淋滤飞灰后灰渣进行热处理时发现,温度是影响重金属挥发率的重要因素,热处理温度高于800℃时,Pb的浸出浓度达到生活垃圾填埋场污染控制标准(GB16889-2008)标准限值要求,但未对热处理过程中Pb的迁移转化机理进行深入探究. 为了解纳滤膜浓缩液淋滤对飞灰中重金属存在以及后续热处理过程中迁移转化的影响,本研究以Pb为例,探讨了淋滤过程、以及后续热处理不同温度下Pb的存在形态以及迁移转化特性,以期为探究飞灰协同处置纳滤膜浓缩液的可行性提供科学依据.
-
飞灰采集于北京某生活垃圾焚烧厂的布袋除尘器,外观呈灰色,该厂焚烧系统采用炉排炉技术,烟气处理系统采用炉内脱硝(SNCR)+半干法脱酸+干粉辅助脱酸+袋式除尘+炉外脱硝(SCR)的组合工艺. 其主要化学成分见表1.
纳滤膜浓缩液取自北京市某生活垃圾填埋场渗滤液的“厌氧+好氧+膜生物反应器(MBR)+纳滤(纳滤)+反渗透(RO)”组合处理工艺. 纳滤膜浓缩液主要特征污染物组成见表2.
淋滤灰渣是将24 g PbO加入到2 kg飞灰中混匀并经纳滤膜浓缩液淋滤后得到的固体样品.
配比灰渣是按照淋滤灰渣主要成分比例,采用化学分析纯试剂进行配比得到固体样品,主要成分及百分质量比为:CaO(25%)、SiO2(25%)、Na2SO4(10%)、Al2O3(20%)和PbO(20%).
-
如图1所示,淋滤装置由马氏瓶和有机玻璃柱两部分组成,有机玻璃柱长80 cm、内径10 cm,顶部有均匀布水装置. 淋滤实验是将混匀后飞灰装填进入有机玻璃柱,前期根据氯离子最佳累积溶出量确定淋滤最佳条件为采用8 L纳滤膜浓缩液进行淋滤,并保持淋滤速度为60 mL·h−1,待纳滤膜浓缩液完全淋尽后,实验结束,将淋滤灰渣取出后进行干燥处理保存. 热处理实验采用高温管式炉装置,热处理温度分别为400、600、800、1000 ℃,热处理时间为60 min,采用空气作为载气,进气流量600 mL·min−1,尾气吸收装置采用2个装有浓度为5%HNO3和5%NaOH溶液的洗气瓶吸收处理. 实验时,先将炉温升至预设温度,再将淋滤灰渣20 g和配比灰渣10 g分别放置于坩埚内,缓慢推至恒温区,然后关闭进料阀门并通入空气. 60 min后,取出坩埚并放置于干燥器内冷却,称重记录.
-
采用飞利浦 X 射线荧光光谱仪PW-2404(XRF)分析实验样品的化学组成;采用岛津 X 射线衍射仪D/max-A(XRD)分析矿物相;采用电感耦合等离子体质谱法[20]分析重金属含量;采用Thermo Kalpha(XPS)分析重金属元素的价态;采用FactSage软件分析不同温度下Pb结合态的吉布斯自由能.
为更好的表达重金属的固化效果,特引入重金属固化率E定义,计算结果如下:
式中,
E 为重金属的固化率,%;ω1 为热处理后样品中Pb的含量,mg·kg−1;m1 为热处理后样品质量,g;ω 为热处理前样品中Pb的含量,mg·kg−1;m 为热处理前样品质量,g. -
从图2可知,淋滤灰渣中除了PbO晶体外,同时检测到了铅黄Pb2(SO4)O,这说明纳滤膜浓缩液中SO42−与飞灰中PbO发生了反应(PbO+SO42−→PbO+PbSO4+PbO→Pb2(SO4)O). 经纳滤膜浓缩液淋滤后,PbO含量由1.30%上升至27.36%,其质量为546 g;将淋滤灰渣中含硫元素全部折算成硫酸根后,淋滤灰渣中硫酸根含量占比2.87%,其质量为58 g,计算可得PbO与硫酸根物质的量比为12:1,表明PbO和Pb2(SO4)O同时存在于淋滤灰渣中. 龚勋[21]用Visual MINTEQ淋滤粉煤灰,当6<pH<8时粉煤灰中可溶性Pb明显减少,推测可能生成了Pb2(SO4)O;当7<pH<8时PbO·PbSO4会逐渐分解,碱性环境下生成Pb(OH)2. 本实验采用的纳滤膜浓缩液pH为7.1,与龚勋研究结果基本相似.
从表3中可知,添加了PbO的飞灰经纳滤膜浓缩液淋滤后,组成成分发生了较大的变化,Cl含量由原飞灰的22.48%降至0.40%,飞灰中Cl的大量溶出使主要化学成分比例发生改变. 由表4和图2可知,淋出液中Cl−浓度高达3.2×105 mg·L−1,说明在纳滤膜浓缩液淋滤飞灰过程中,飞灰中Cl主要以NaCl、KCl等可溶性氯盐形式被洗脱到淋出液中. 在淋滤灰渣XRD中并未检出. 纳滤膜浓缩液中PO42−含量较SO42−和Cl−含量少,且飞灰中的P2O5含量仅占0.4%,推测淋滤灰渣中Pb的氯化物及磷酸盐结合态可能存在,但含量低于检出限值.
-
将飞灰与淋滤灰渣在400—1000 ℃下进行热处理. 从图3可知,淋滤灰渣中Pb的固化率比飞灰Pb的固化率高,增幅在30%—70%之间. 400 ℃下,淋滤灰渣中Pb的固化率最高,为96.87%. 随着温度的升高,固化率呈线性下降的趋势,800 ℃后下降更快. 随着温度的逐渐升高,淋滤灰渣中Pb的含量呈现先增加后减少的趋势,在800 ℃下达到最高为0.9%±0.02%. 这是因为在800 ℃左右,淋滤灰渣中有机质基本都焚毁,此时烧失率为20%,而温度又没有达到Pb可能存在氧化态(PbO熔点:886 ℃、沸点:1535 ℃),硫酸态(PbSO4熔点:1087 ℃)和磷酸态(Pb3(PO4)2熔点:1014 ℃)物质的熔沸点,Pb化合物的绝对质量变化较少,而相对质量含量小幅增加;当温度达到1000 ℃时,淋滤灰渣中Pb的含量下降至0.6%±0.02%,是由于在1000 ℃时,PbO开始挥发[22].
-
利用XRD分析了淋滤灰渣热处理产物的晶相成分. 从图4可知,400—1000 ℃过程中,淋滤灰渣中结合态Pb含量低于XRD检出限;但在800 ℃下,CaO与SiO2凝聚成新的矿物相Ca10[(SiO4)3(SO4)3]F2 (羟硅硫灰石);反应机理[23]可以描述为CaF2+SiO2+CaSO4→Ca10(SiO4)3(SO4)3F2+CaO+H2O;1000 ℃又出现了Ca5(SiO4)2(SO4)(硫铝酸钙),推测SiO2参与合成新的矿物相,表明800 ℃以上大部分化合物形态被破坏,发生了分子键的断裂和重新生成,以复合盐形式存在于淋滤灰渣中.
从图3可知,800—1000 ℃条件下,配比灰渣与淋滤灰渣中Pb的固化率有相似的趋势. 这虽不能完全断定淋滤灰渣的主要成分和重金属均以氧化物形式存在,但可以推测淋滤灰渣中Pb最初不是以氯化态形式存在,而且在热处理过程中会有挥发现象,最终多以氧化态形式参与反应并固化. 实验在800—1000 ℃对淋滤灰渣进行XPS分析,如图5可知,在淋滤灰渣中出现了Pb4f峰,表明Pb存在并以某种形式存在于淋滤灰渣中,而并未全部挥发. Pb4f峰根据自旋轨道分裂可以分为Pb4f5/2和Pb4f7/2,分别位于139 eV和144 eV,PbO的结合能在Pb4f5/2和Pb4f7/2谱峰下分别为138.85 eV和143.75 eV,表明PbO的拟合效果最好,Pb以PbO的形式参加反应. 为了能更好探索热处理过程中淋滤灰渣中Pb的固化机理,用化学药品PbO(分析纯)等按淋滤灰渣的主要成分比例进行人工配比实验,将复杂的热处理过程分解为几个过程来研究.
由图4可知,配比灰渣中出现了Pb的矿物相Ca2PbO4. 孙立等[24]研究表明,在800 ℃下,由于硅基物质含量的增加,重金属主要被固定在硅酸盐等结构中. Lu等[23]在使用密度泛函理论(DFT)来揭示飞灰中Pb在CaO表面转变的过程中发现,飞灰中的CaO能有效吸附PbO和PbCl2且PbO的电子离域更强,加速飞灰中Pb的富集,为重金属的原位固定提供了支持. 为验证配比灰渣中Pb的固化机理,借助FACT程序,通过平衡态稳定的Gibbs自由能判据来分析特定条件下Pb的结合态生成物的稳定性. ΔG<0,反应可以进行. ΔG越小,说明有利于反应的正向进行,生成的物质越稳定.
800 ℃下Ca2PbO4的合成反应更易发生,1000 ℃的Ca2PbO4晶格仍然存在. 从图4可知,800—1000 ℃过程中,配比灰渣中Ca2PbO4十分稳定且峰值明显增强,且生成量随着温度的升高而逐渐增大. 张芝昆[25]研究表明,碱度的增加会提高玻璃质熔渣的析晶能力. 由于CaCO3在800 ℃以上受热易分解为CaO和CO2,使得800 ℃后CaO的含量递增速度大,碱度增加使Ca2PbO4更易析出. Yang等[26]研究表明,800—1100 ℃中Ca2+会与硅氧四面体竞争更多的O2−,产生更多的活性位点,更易析出晶体. 推测Ca2+竞争位点后更易与Pb发生反应生成Ca2PbO4. 在1000 ℃下,PbSiO3的自由能小于Ca2PbO4的自由能,理论上会更易生成PbSiO3,但在XRD并未检出. 由于在1000 ℃下配比灰渣中大部分SiO2与Al2O3结合生成新的硅铝酸盐-八面沸石,推测只存在少部分SiO2与PbO结合生成了PbSiO3,但可能由于含量太低而未检出.
淋滤灰渣中增加了纳滤膜浓缩液中硫酸根、磷酸根等特征因子. 在热处理过程中,Pb仍会存硫酸盐、磷酸盐等形式,再次通过计算平衡态稳定的Gibbs自由能变量判据研究重金属Pb化合盐体系热分解或合成反应的可能性与进行程度.
由表5可知,400—1000 ℃过程中,PbSO4的热分解反应ΔG>+40 kJ·mol−1,反应不可自发进行;但对于PbSO4来说,其分解不直接发生此反应. 600 ℃后SO3的含量逐渐升高,是由于少量PbSO4在特定条件下分解成nPbO·PbSO4进而分解成PbO[27]. 由于Pb3(PO4)2的分解反应并不能自发进行且P2O5的含量随着温度的升高而增加,说明P2O5含量的升高与Pb的磷酸盐等化合物无影响. 淋滤灰渣中可能存在碱式碳酸盐其在热处理过程中机理与PbCO3类似,PbCO3在400 ℃可发生热分解反应[28],可说明Pb的碳酸盐形态受热不稳定易分解,实际上PbCO3的分解温度在225 ℃,首先分解为PbCO3·2PbO和CO2,然后PbCO3·2PbO分解成PbO和CO2. 由式(4)可知,PbSiO3的合成反应一直进行,800 ℃后出现了Ca10[(SiO4)3(SO4)3]F2(羟硅磷灰石)、Ca5(SiO4)2(SO4)(硫铝酸钙)等,使PbSiO3生成的量随温度升高而减小.
-
(1)纳滤膜浓缩液淋滤焚烧飞灰过程中,可溶性氯盐被大量溶出,Pb与SO42−结合形成Pb2(SO4)O(铅黄).
(2)随着温度的升高,淋滤灰渣中Pb的固化率较飞灰Pb的固化率高30%—70%.
(3)随着温度的升高,淋滤灰渣中碱式碳酸铅随着温度的升高逐渐被分解,400 ℃下完全分解;Pb以硫酸盐、磷酸盐形式稳定存在于灰渣中;当温度达到800 ℃以上时,Pb的氯化物挥发,Pb的硅酸盐含量随着温度升高逐渐降低;同时生成了新的矿物相Ca2PbO4,生成量随着温度的升高而逐渐增大,为淋滤灰渣在热处理过程中固化更多的Pb提供理论支撑.
焚烧飞灰在纳滤膜浓缩液淋滤及后续热处理中Pb的迁移转化
Migration and transformation of Pb in nanofiltration membrane leaching and incineration fly ash during heat treatment
-
摘要: 探究了纳滤膜浓缩液淋滤焚烧飞灰过程及淋滤灰渣在400—1000 ℃热处理过程中Pb的迁移转化特性. 结果表明,淋滤过程中飞灰中大部分氯盐被溶出,有新的矿物相Pb2(SO4)O出现. 后续的热处理中,在400—1000 ℃过程中Pb2(SO4)O分解成PbSO4,然后同Pb的磷酸盐稳定存在于灰渣中,碱式碳酸盐在400 ℃下完全分解. 当温度达到800 ℃以上,PbSiO3含量随着温度升高逐渐降低,生成了Ca2PbO4且生成量随着温度的升高而逐渐增大.Abstract: The leaching and incineration of fly ash from concentrated solution of nanofiltration membrane and the migration and transformation characteristics of Pb in leached ash during 400-1000℃ heat treatment were studied. The results showed that most of the chlorine salts in the fly ash were leached out during the leaching process, and a new mineral phase Pb2(SO4)O appeared. In the subsequent heat treatment, Pb2(SO4)O decomposed into PbSO4 at the temperature of 400—1000℃, and then the phosphate with Pb existed stably in the ash , and the alkali carbonate decomposed completely at 400℃. When the temperature reached above 800℃, the PbSiO3 content gradually decreased with the increase of temperature, and Ca2PbO4 was generated, and the amount generated gradually increased with the increase of temperature.
-
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一类环境中广泛存在的有机污染物,主要来自于人为源,如石油泄漏、汽车排放、化石燃料和生物质燃烧、工业过程以及化学制造,也有部分来自火山活动、森林火灾和成岩作用等自然源[1-2]. 这类污染物因其分布广、生物累积性和对人类的潜在生态风险[3]而受到广泛关注. 16种PAHs被美国环境保护署(USEPA)列为优先控制的污染物[4]. 其中,含有2—3个苯环的低分子量PAHs被认为是非致癌物,而含有4—6个环的7个高分子量PAHs被列为致癌物[5]. PAHs一旦释放到环境中,能够通过水和空气进行长距离的迁移,扩散到全球范围的土壤[6-7]、沉积物[8-9]、水[10]和大气[11-12]中. PAHs不易降解,容易被土壤颗粒吸附[13-14],因此土壤埋藏了环境中90%以上的PAHs,是一个重要的汇[15].
尽管存在一些自然来源,造成全球范围内PAHs污染的主要原因仍是与城市化密切相关的人为排放[16]. 许多发展中国家,尤其是中国,正处于城市化兴起与快速发展的过渡时期. 由于大规模的城市化和工业化,我国城市地区大量人口密集,随之出现工业活动加剧、汽车使用激增等现象,从而导致大量PAHs通过大气沉降进入城市土壤[17-18]. 此外,PAHs在城市土壤中的分布主要归因于其释放源的类型和位置[19-20]. 因此,加剧的人类活动可能会改变城市土壤环境中PAHs的组成和分布. 基于不同PAH毒性的差异性,组成的改变也可能会引起暴露人群健康风险的变化. 然而,这个问题迄今为止较少引起关注[21].
研究表明,城市化可能是影响城市土壤中PAHs环境行为的关键因素. Wang等[22]通过分析土壤PAHs浓度、城市化指标以及土壤理化性质之间的相关性,提出人口密度是影响南京城市土壤PAHs含量的关键因素之一. Cao等[21]基于苏南一个快速发展的城镇土壤中2009年和2014年PAHs的浓度,将其含量、组成和来源的变化归因于城市化进程. Jensen等[23]发现挪威南部邻近奥斯陆的地区,因其人口较多和城市化程度较高,土壤中PAHs浓度高于位于挪威北部,人口较少的地区. 此外,也有一些学者[19, 24-26]利用湖泊和水库中的柱状沉积物,以及不同城市化阶段或不同深度的土壤样品,探讨PAHs的环境行为与城市化过程之间的关系. 然而,深入探讨某个特定时期城市化进程对城市土壤中PAHs浓度、来源和暴露风险影响的研究却很少.
2008年至2012年,天津市处在城市化最快的时期[27],且2012年以前,全市生产总值(GDP)增速均保持在16%以上,为近15年来最高水平[28]. 本研究基于天津市近郊地区(包括西青区、津南区、北辰区和东丽区)土壤中的16种优先控制PAHs的浓度数据,利用正定矩阵因子分解(positive matrix factorization, PMF)模型和终身累积癌症风险(incremental lifetime cancer risk, ILCR)模型定量解析出2008年和2012年天津市近郊地区土壤中PAHs的来源组成以及人体暴露风险,并将两个年份的解析结果进行对比分析. 旨在通过定点定期的监测结果,探讨在经济高速发展的背景下,快速城市化过程中区域土壤中PAHs排放源的变化及其引起的浓度、组成和生态风险的改变,进而揭示人类活动对城市环境的影响.
1. 材料和方法(Material and methods)
1.1 样品采集
2008年8月[29]和2012年10月[30]在天津市近郊地区(西青区、津南区、北辰区和东丽区)使用不锈钢勺分别采集获得83个和60个土壤样品(表层0—10 cm,各1 kg),并储存在聚乙烯密封袋中. 每1个样品由10—20个采自于站位点周边10×10 m2范围内的子样品混合而成. 每次采样之前使用丙酮冲洗不锈钢勺防止沾污. 所有土壤样品均放置在暗处,并尽快运送到实验室,经风干、研磨、过筛(50目)之后,于−20 ℃环境下保存.
1.2 PAHs的测定
采用加速溶剂萃取法(accelerated solvent extraction, ASE)对土壤样品进行萃取. 取16 g冻干土壤样品和5 g二氧化硅混匀后倒入34 mL ASE样品瓶,以丙酮与二氯甲烷(1:1体积比)混合溶液为萃取溶剂,将样品在温度和压力分别为120 °C和1500 psi的条件下萃取2次,每次5分钟,所得的提取液蒸发至近干,加入9 mL环己烷与丙酮(1:1体积比)的混合溶液. 替换溶剂之后的提取液依次使用凝胶色谱(LCTech Geremany)和弗罗里硅固相萃取柱进行纯化,所得洗脱液经氮吹浓缩至1 mL转入棕色安捷伦进样瓶中上机分析. 采用GC-MS方法对PAHs进行定量分析,仪器参数和分析方法的质量控制见文献[29]. 16种PAHs包括萘(NAP)、苊(ACE)、芴(FLO)、二氢苊(ACY)、菲(PHE)、蒽(ANT)、荧蒽(FLA)、芘(PYR)、䓛(CHR)、苯并(a)蒽(BaA)、苯并(b)荧蒽(BbF)、苯并(k)荧蒽(BkF)、苯并(a)芘(BaP)、二苯并(a,h)蒽(DahA)、苯并(g,h,i)苝(BghiP)和茚苯(1,2,3-cd)芘(IcdP). PAHs加标回收率和指示物回收率分别为62.2%—116.7%和70.6%—119.1%.
1.3 PMF源解析
PMF是由Paatero和Tapper[31]开发的,基于主成分分析的非负约束受体模型,常用于环境中PAHs的源解析[32]. 该模型的矩阵方程式为:
X=G×F+E 式中,X代表由n个样品的m种化合物的浓度组成的样品浓度数据矩阵;G代表主要源的贡献率矩阵(n×p,p为源的个数);F代表主要源的成分谱矩阵(p×m);E代表残差矩阵(n×m),定义为:
eij=xij−p∑k=1gikfkj 式中,eij、xij、gik和fkj分别为E、X、G和F中的对应元素. 在对F和G进行非负约束的同时,对每个数据点的不确定性进行加权. Q是模型的判据之一,当其收敛时才可进一步分析,且多次运行选Q较小的值来继续分析. Q的计算公式为:
Q=n∑i=1m∑j=1(eijσij)2 式中σij为第i个样品中第j种化合物的不确定性,其他项含义如前文所述.
本研究利用USEPA开发的PMF模型软件5.0,基于83(样品)×16(PAHs)数据集和60(样品)×16(PAHs)数据集,分别对2008年和2012年天津市近郊地区土壤中PAHs来源进行识别. 模型解析目标设置为计算出3到6个因子,且每次运行都用不同的起始点进行初始化. 对于每次运行,正定矩阵因子分解模型的样品数符合模型对最少样本量的需求,即样本数大于物种数的3倍[33].
1.4 风险评估
利用ILCR模型可定量评估城市居民通过摄入、皮肤接触和吸入3种方式暴露于土壤PAHs的潜在健康风险[34-35]. 基于USEPA标准模型计算潜在癌症风险的方程式[36-37]如下.
ILCRingestion=CS×(CSFingestion×3√BW/70)×IRingestion×EF×EDBW×AT×106ILCRdermal=CS×(CSFdermal×3√BW/70)×SA×AF×ABS×EF×EDBW×AT×106ILCRinhalation=CS×(CSFinhalation×3√BW/70)×IRinhalation×EF×EDBW×AT×106 其中,CS是土壤中PAHs基于BaP的毒性当量[1](toxic equivalency factor, TEF)计算的转换浓度之和(mg·kg−1);CSF是致癌物斜率因子(mg·kg−1·d−1)−1, 根据BaP的致癌能力进行测定;BW是体重;IRingestion和IRinhalation人体土壤摄入效率和吸入效率;EF代表暴露频率;ED是暴露时长;SA是皮肤表面积;AF是真皮粘附因子;ABS为真皮吸附因子;AT为平均寿命;PEF为颗粒释放因子(见表1). BaP的CSFingestion、CSFdermal和CSFinhalation分别为7.3、25、3.85(mg·kg−1·d−1)-1[38].
暴露参数Exposure parameter 单位Unit 儿童Child 青少年Adolescent 成人Adult BW kg 13.95 46.75 58.78 IRingestion mg·d−1 200 100 100 IRinhalation m3·d−1 10.9 17.7 17.5 EF d·a−1 350 350 350 ED a 6 14 30 SA cm2 2800 2800 5700 AF mg·cm−2 0.2 0.2 0.07 ABS — 0.13 0.13 0.13 AT d 25550 25550 25550 PEF m3·kg−1 1.36×109 1.36×109 1.36E×109 1991年USEPA发布的指南指出[37],百万分之一的癌症发病几率(ILCR = 10−6)是可接受的阈值. 因此,依据ILCR的判断标准如下:ILCR ≤ 10−6时代表可忽略风险;10−6 < ILCR < 10−4表示低风险;ILCR ≥ 10−4表示癌症高风险,需要特别关注. 在本研究中,依据年龄将居民分为儿童(0—10岁)、青少年(11—18岁)和成人(19—70岁)的3个群体进行癌症风险评估.
1.5 数据分析
利用Origin2019软件进行数据记录、数据处理以及表格制作;利用USEPA PMF 5.0软件进行PAHs来源识别及贡献计算. 天津市及其区县社会经济发展的数据分别引自2009年、2013年、2014年和2015年天津统计年鉴[28].
2. 结果与讨论( Results and discussion)
2.1 PAHs含量及组成的变化趋势
2008年至2012年,天津市近郊地区表层土壤中16种PAHs浓度呈倍数增长,7种致癌PAHs浓度也呈上升趋势. 如表2所示,五环化合物的浓度占比大幅度下降,而二环和四环化合物的占比均显著增加, 低分子量组分的比例由28.6%上升到34.8%. 优势化合物由苯并(b)荧蒽、荧蒽和苯并(g, h, i)苝转变为菲、萘和荧蒽. 萘、二氢苊、菲等低分子量PAHs的浓度明显增加. 虽然PAHs被认为是持久性有机污染物能长期存在于环境中,但其仍可通过光化学降解、生物降解和挥发作用从土壤中去除[40]. 以往的研究发现[21, 41],PAHs在土壤中长期埋藏后,浓度会显著下降. 另外,具有不同个数苯环的PAHs在土壤中表现出不同的环境行为[15]. 高分子量的PAHs通常能在土壤中埋藏较长时间,其降解速率随着分子量的增加而降低[42],而低分子量的更容易被光降解或生物降解. 因此,总浓度以及低分子量组分占比的增加,表明土壤环境中存在持续不断的PAHs输入,且污染状况趋于严重,这与该地区5年内经济高速发展,城市化进程加快有着密切的关系. 2008年西青区、津南区、北辰区和东丽区的常住人口总计228.59万,区县生产总值(GDP)共计1336.66亿元[28]. 2012年,4个区的常住人口增加到283.03万,区县生产总值(GDP)增加了近一倍,达到2552.27亿元[28]. 通常来说,人为源是环境中PAHs急剧增加的主要原因. 城市土壤中的PAHs主要来源于工业活动、机动车排放以及居民烹饪和取暖,因此,其受到区域经济发展水平、人口和工业化程度的影响[22, 43].
表 2 天津市近郊区土壤中PAHs毒性当量因子、含量及组成Table 2. Toxic equivalent factors, composition, and concentrations of PAHs in surface soils from suburban Tianjin in 2008 and 2012PAHs 环数Aromatic ring 毒性当量因子TEF 2008(n = 83) 2012(n = 60) 均值/(ng·g−1)Mean 范围/(ng·g−1)Range 组成占比/%Proportion 均值/(ng·g−1)Mean 范围/(ng·g−1)Range 组成占比/%Proportion 萘 2 0.001 18.7 2.72—133 6.0 68.2 ND—441 10.8 二氢苊 3 0.001 3.96 ND—42.6 1.0 35.2 ND—697 4.1 苊 3 0.001 3.10 ND—19.2 1.3 4.44 ND—31.0 0.5 芴 3 0.001 17.0 1.23—86.5 8.4 12.8 ND—78.0 2.0 菲 3 0.001 36.5 1.98—336 8.4 131 7.45—1091 16.4 蒽 3 0.01 16.6 0.502—306 3.6 11.6 0.450—107 1.0 荧蒽 4 0.001 63.4 2.39—792 9.4 255 ND—3278 15.6 芘 4 0.001 56.9 1.17—728 8.0 154 1.00—1977 9.0 苯并(a)蒽* 4 0.1 33.1 0.225—386 5.2 68.7 0.470—841 3.9 䓛* 4 0.01 46.1 0.717—506 6.4 97.9 0.850—1210 6.7 苯并(b)荧蒽* 5 0.1 103 ND—1010 13.6 118 1.38—1362 8.1 苯并(k)荧蒽* 5 0.1 43.6 ND—669 5.5 43.3 0.230—549 2.6 苯并(a)芘* 5 1 52.2 ND—728 6.8 86.6 0.370—1118 4.8 二苯并(a, h)蒽* 5 1 22.9 ND—252 4.0 33.4 ND—348 2.4 茚苯(1, 2, 3-cd)芘* 6 0.1 23.3 ND—244 3.1 106 2.37—1237 7.1 苯并(g, h, i)苝 6 0.01 66.3 ND—886 9.2 70.0 1.23—775 4.9 二环化合物 — — 18.7 2.72—133 6.0 68.2 ND—441 10.8 三环化合物 — — 77.2 6.34—701 22.6 195 7.90—1586 24.0 四环化合物 — — 199 8.53—2413 29.1 575 2.32—7306 35.2 五环化合物 — — 221 ND—2445 30.0 281 1.98—3377 17.9 六环化合物 — — 89.6 ND—1129 12.3 176 4.90—2012 12.0 Σ7-carPAHs — — 324 5.03—3582 44.7 554 7.98—6666 35.6 Σ16PAHs — — 606 29.7—6705 100 1296 22.9—14722 100 注:“*”代表7种具有致癌作用的PAHs;“ND”代表未检出;“Σ7-carPAHs”代表7种具有致癌作用PAHs总含量;“Σ16PAHs”代表16种PAHs总含量. * stands for 7 carcinogenic PAHs, ND stands for not detected, Σ7-carPAHs stands for total concentrations of 7 carcinogenic PAHs, Σ16PAHs stands for total concentrations of 16 PAHs. 2.2 PAHs的来源
2008年PAHs来源成分谱如图1所示,模型筛选出5个因子. 因子1中表征炼焦生产的芴[44]占比达到71.2%,推断该因子代表炼焦排放,其贡献为6.0%. 因子2中蒽和菲的占比较高,分别为61.6%和52.5%,符合生物质燃烧的排放特征[16, 45],推断因子2为生物质燃烧排放,其贡献为14.5%. 因子3中优势组分为萘、苊和二氢苊,占比分别为54.6%、63.9%和66.9%. 萘是原油和石油产品的重要组成部分[46-48],并且二环和三环PAHs多与石油类来源有关[49-51]. 因此,因子3表示石油源,其贡献为5.1%. 因子4中荧蒽(69.5%)、芘(70.8%)、䓛(56.2%)、苯并(a)蒽(72.9%)、苯并(b)荧蒽(67.1%)、苯并(k)荧蒽(55.6%)和苯并(a)芘(70.7%)占比较高,符合煤燃烧排放特征[16, 52-55]. 因此,因子4表示燃煤源,其贡献为51.3%. 因子5中表征汽车尾气[16, 56-57]的二苯并(a,h)蒽、茚苯(1,2,3-cd)芘和苯并(g,h,i)苝占比较高,分别为94.6%、51.2%和71.0%,推断该因子代表机动车排放,其贡献为23.1%.
2012年PAHs来源成分谱如图2所示,模型也筛选出5个因子. 因子1中荧蒽、芘、䓛、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽和苯并(a)芘占比较高,分别为61.1%、56.8%、52.0%、57.5%、52.4%、55.0%和59.6%,符合煤燃烧排放特征[16, 52-55]. 因此,因子1表示燃煤源,其贡献为41.0%. 因子2中表征原油和石油产品的萘[46-48]占比达83.2%,推断该因子为石油源,其贡献为22.3%. 因子3中苊、芴和菲占比相对较高,其中芴和菲的占比分别为42.6%和26.8%,是炼焦生产的表征化合物[44, 55]. 因此,因子3应该与焦炭的生产密切相关,其贡献为4.7%. 因子4中生物质燃烧过程排放的优势化合物二氢苊[44-45]占比高达91.8%,推断该因子代表生物质燃烧排放,其贡献为3.6%. 因子5中的优势组分为二苯并(a,h)蒽、茚苯(1,2,3-cd)芘和苯并(g,h,i)苝,占比分别为78.7%、38.3%和33.2%,符合汽车尾气排放特征[16, 56-57]. 因此,推断该因子代表机动车排放,其贡献为28.4%.
基于上述PMF的解析结果发现,天津市近郊区域土壤中PAHs来源贡献率变化较大的是燃煤源、生物质燃烧排放和石油源. 其中,燃煤源和生物质燃烧排放的贡献率分别由2008年的51.3%和14.5%下降到2012年的41.0%和3.6%(图3). 虽然煤炭是天津市工业的主要能源,但是燃煤源的贡献率在5年内下降了10.3%. 此外,根据地理位置和居民的生活习惯,调查区域的生物质燃烧应与露天焚烧秸秆和居民烹饪有关. 2008年天津市启动生态城市建设行动计划,包括生态区县建设,改善水、空气、生态环境质量,提升固体废物综合利用水平,加强农村环境污染防治,发展循环经济等7个方面. 为了实现节能减排、改善城市环境质量,很多企业在生产过程中使用电力、天然气等清洁能源取代了煤炭,到2012年,天津市单位工业增加值能耗由2008年的1.16吨标准煤每万元下降到0.95吨标准煤每万元. 因此,燃煤源贡献率的下降可能与该区域工业化发展过程中能源结构的变化、装备和技术的不断发展有关. 另一方面,生物质燃烧排放贡献率的下降则可能与禁止露天生物质燃烧,以及电力和液化石油气取代了生物质作为烹饪燃料有关.
但是,5年内石油源的贡献率却由5.1%上升到22.3%. 天津作为我国北部重要的工业城市,石油化工是其优势产业之一. 2008年天津市石油化工联合其他五大优势产业完成工业总产值8323.89亿元,而到2012年仅石油化工这一项优势产业就完成产值3626.63亿元. 2017年发布的天津市石油和化学工业发展“十三五”规划纲要指出,2015年全市拥有石化企业711家,资产总额3756.57亿元,全年实现产值4024.32亿元,约占全市规模以上工业的15%. 到2020年,石油化工产业总产值将超过6000亿元. 同时,天津市也因天津港成为我国北部最重要的国际航运物流中心之一. 2020年天津港口货物吞吐量突破5亿吨,集装箱吞吐量突破1800万标准箱,均在全国港口中居第六位,“十三五”时期集装箱吞吐量年均增长5.4%,稳居全球集装箱港口十强. 因此,石油化工产业和航运物流产业的快速扩张与发展可能是石油源贡献率迅速增长的一个重要原因.
2.3 健康风险评估
ILCR模型解析结果表明,2008年和2012年天津市近郊地区居民土壤PAHs暴露风险值ILCRsinhalation的数量级在10-14—10-10之间,远低于10−6. 因此,居民通过吸入方式接触到土壤中PAHs而导致的健康风险可以忽略.
如表3所示,2008年近郊地区居民土壤PAHs暴露风险值ILCRsingestion和ILCRsdermal的范围分别为1.19 × 10−9—5.89 × 10−6和2.84 × 10−9—1.00 × 10−5,它们最大值分别出现在儿童和成人. 根据不同年龄段暴露人群的统计结果,分别有32.5%、24.1%和36.1%的土壤样品的儿童、青少年和成人暴露总风险值ILCRstotal处于低风险判定区间内. 2012年居民各暴露途径的风险值ILCRs均高于2008年,ILCRsingestion的范围为2.84 × 10−9—9.51 × 10−6,ILCRsdermal的范围为6.79 × 10−9—1.62 × 10−5,两者最大值出现的年龄段和2008年一致. 儿童、青少年和成人暴露总风险值ILCRstotal大于10−6的土壤样品比例分别为41.7%、36.7%和45.0%,较2008年均有不同程度的增长. 值得注意的是,2008年和2012年居民土壤PAHs暴露风险值ILCRsdermal均高于ILCRsingestion,并且2012年青少年和成人暴露风险值ILCRsdermal的均值较2008年增长了一个数量级. 上述结果表明,2008年到2012年,天津市近郊地区居民土壤PAHs暴露风险在不断增加,且皮肤接触是主要的暴露途径;儿童因其对致癌物的高敏感性应归为最敏感的亚群体. 人群暴露风险的增加可能与机动车排放源贡献率增加有关. 根据PMF解析结果,虽然2012年机动车排放贡献率较2008年仅增加了5.3%,但是其估算排放量是2008年的2.6倍. 机动车排放量大幅度的增加导致更多的具有强致癌效力的特征组分[1, 56-57],如苯并(a)芘、二苯并(a, h)蒽和茚苯(1, 2, 3-cd)芘进入到土壤中,增加暴露人群的健康风险. 另一方面,石油源的贡献率和估算排放量的增幅虽然最大,但其排放至环境中的组分主要是致癌效力较低的低分子量PAHs.
表 3 不同群体暴露于土壤PAHs的潜在癌症风险Table 3. Age-specific potential cancer risk via exposure to soil PAHs in 2008 and 20122008 2012 人群Population 均值Mean 最小值Min 最大值Max 均值Mean 最小值Min 最大值Max 儿童Child ILCRingestion 4.87 × 10−7 2.28 × 10−9 5.89 × 10−6 7.84 × 10−7 5.45 × 10−9 9.51 × 10−6 ILCRdermal 6.07 × 10−7 2.84 × 10−9 7.34 × 10−6 9.78 × 10−7 6.79 × 10−9 1.19 × 10−5 ILCRtotal 1.09 × 10−6 5.12 × 10−9 1.32 × 10−5 1.76 × 10−6 1.22 × 10−8 2.14 × 10−5 青少年Adolescent ILCRingestion 2.53 × 10−7 1.19 × 10−9 3.07 × 10−6 4.09 × 10−7 2.84 × 10−9 4.95 × 10−6 ILCRdermal 6.32 × 10−7 2.96 × 10−9 7.65 × 10−6 1.02 × 10−6 7.08 × 10−9 1.24 × 10−5 ILCRtotal 8.85 × 10−7 4.14 × 10−9 1.07 × 10−5 1.43 × 10−6 9.92 × 10−9 1.73 × 10−5 成人Adult ILCRingestion 4.66 × 10−7 2.18 × 10−9 5.65 × 10−6 7.52 × 10−7 5.22 × 10−9 9.11 × 10−6 ILCRdermal 8.28 × 10−7 3.88 × 10−9 1.00 × 10−5 1.34 × 10−6 9.28 × 10−9 1.62 × 10−5 ILCRtotal 1.29 × 10−6 6.06 × 10−9 1.57 × 10−5 2.09 × 10−6 1.45 × 10−8 2.53 × 10−5 注:ILCRtotal = ILCRingestion + ILCRdermal 3. 结论(Conclusions)
2008年至2012年,天津市近郊地区城市化发展在一定程度上改变了土壤中PAHs的来源、含量和组成.
(1) 土壤中16种PAHs的总含量均值增加了1倍,菲、萘和荧蒽取代苯并(b)荧蒽、荧蒽和苯并(g, h, i)苝成为优势组分,萘、二氢苊、菲等低分子量PAHs的浓度明显增加.
(2) 五环化合物占比大幅度下降,而二环和四环化合物占比均显著增加.
(3) PMF解析结果表明,燃煤源和生物质燃烧排放的贡献率均减少10%以上,石油源的贡献率增加17.2%.
(4) 当地居民土壤PAHs暴露风险在不断增加,儿童作为最敏感的亚群体应受到关注,皮肤接触是主要的暴露途径. 机动车排放源贡献率的增加可能的导致暴露风险上升的重要原因.
-
表 1 飞灰主要化学成分
Table 1. Main chemical compositions of MSWI fly ash and leached fly ash
主要成分 Ingredient 含量/ % Content 主要成分 Ingredient 含量/ % Content CaO 45.68±1.26 SiO2 2.72±0.19 Cl 22.75±0.28 ZnO 0.85±0.02 Na2O 12.17±0.12 Al2O3 0.81±0.10 SO3 6.16±0.11 P2O5 0.40±0.12 K2O 5.20±0.37 PbO 0.12±0.02 表 2 纳滤膜浓缩液水质参数(mg·L−1)
Table 2. Water quality parameters of nanofiltration membrane (mg·L−1)
污染物指标Pollutant index 化学需氧量Chemical oxygen demand 生化需氧量Biochemical oxygen demand 氨氮Ammonia nitrogen Cl− SO42− PO42− 纳滤膜浓缩液 2490±60 473±28 191±12 3420±38 249±18 5.88±0.37 表 3 淋滤前后飞灰主要化学成分(%)
Table 3. Main chemical constituents of fly ash before and after leaching
固体样品Solid samples CaO Cl SO3 SiO2 PbO P2O5 飞灰(加入PbO) 45.14±0.86 22.48±0.30 6.09±0.20 2.69±0.24 1.30±0.03 0.40±0.07 淋滤灰渣 33.63±0.56 0.40±0.08 2.39±0.23 1.52±0.05 27.36±0.22 0.19±0.08 表 4 淋滤前后纳滤膜浓缩液中主要离子指标
Table 4. Main ion indexes in nanofiltration membrane before and after leaching
液体样品 Liquid samples pH Cl-/(mg·L−1) SO42-/(mg·L−1) PO42-/(mg·L−1) 纳滤膜浓缩液 7.1±0.1 3.4×103±38.2 2.5×102±18.5 5.9±0.4 淋出液 13.5±0.1 3.2×105±1980.3 3.4×103±153.6 0.6×10−2±0.0 表 5 吉布斯反应自由能ΔG(kJ·mol−1)
Table 5. Gibbs reaction free energy energyΔG (kJ·mol−1)
温度/℃ Temperature 式(3) 式(4) 式(5) 式(6) 400 446.4 −12.6 454.0 −16.1 600 340.8 −39.6 447.5 −16.2 800 238.2 −64.4 435.8 −17.5 1000 138.5 −89.3 412.5 −21.3 -
[1] 杨凤玲, 李鹏飞, 叶泽甫, 等. 城市生活垃圾焚烧飞灰组成特性及重金属熔融固化处理技术研究进展 [J]. 洁净煤技术, 2021, 27(1): 169-180. doi: 10.13226/j.issn.1006-6772.20052801 YANG F L, LI P F, YE Z F, et al. Study progress on the composition characteristics of fly ash from municipal solid waste incineration and treatment technology of heavy metal melting and solidification [J]. Clean Coal Technology, 2021, 27(1): 169-180(in Chinese). doi: 10.13226/j.issn.1006-6772.20052801
[2] HUBER F, LANER D, FELLNER J. Comparative life cycle assessment of MSWI fly ash treatment and disposal [J]. Waste Management, 2018, 73: 392-403. doi: 10.1016/j.wasman.2017.06.004 [3] SHARIFIKOLOUEI E, BAINO F, SALVO M, et al. Vitrification of municipal solid waste incineration fly ash: An approach to find the successful batch compositions [J]. Ceramics International, 2021, 47(6): 7738-7744. doi: 10.1016/j.ceramint.2020.11.118 [4] LIU Z Y, YUE Y, LU M, et al. Comprehension of heavy metal stability in municipal solid waste incineration fly ash with its compositional variety: A quick prediction case of leaching potential [J]. Waste Management, 2019, 84: 329-339. doi: 10.1016/j.wasman.2018.11.049 [5] 何品晶, 吴长淋, 章骅, 等. 生活垃圾焚烧飞灰及其稳定化产物的长期浸出行为 [J]. 环境化学, 2008, 27(6): 786-790. doi: 10.3321/j.issn:0254-6108.2008.06.018 HE P J, WU C L, ZHANG H, et al. The long-term leaching behavior of air pollution control residues and its treatment products [J]. Environmental Chemistry, 2008, 27(6): 786-790(in Chinese). doi: 10.3321/j.issn:0254-6108.2008.06.018
[6] HE H J, WU T, WANG X G, et al. Study on compressibility and settlement of a landfill with aged municipal solid waste: A case study in Taizhou [J]. Sustainability, 2021, 13(9): 4831. doi: 10.3390/su13094831 [7] 田书磊, 王琪, 汪群慧, 等. 垃圾焚烧飞灰熔融过程中重金属固化特性 [J]. 哈尔滨工业大学学报, 2008, 40(10): 1576-1580. doi: 10.3321/j.issn:0367-6234.2008.10.014 TIAN S L, WANG Q, WANG Q H, et al. Characterics of heavy metals during melting and solidification of MSWI fly ash [J]. Journal of Harbin Institute of Technology, 2008, 40(10): 1576-1580(in Chinese). doi: 10.3321/j.issn:0367-6234.2008.10.014
[8] WU K, SHI H S, de SCHUTTER G, et al. Preparation of alinite cement from municipal solid waste incineration fly ash [J]. Cement and Concrete Composites, 2012, 34(3): 322-327. doi: 10.1016/j.cemconcomp.2011.11.016 [9] 徐昌文, 王声东. 垃圾渗滤液及膜滤浓缩液处理技术探讨与分析 [J]. 环境与可持续发展, 2020, 45(5): 72-75. doi: 10.19758/j.cnki.issn1673-288x.202005072 XU C W, WANG S D. Discussion and analysis on treatment technology of leachate and membrane filtration concentrated solution [J]. Environment and Sustainable Development, 2020, 45(5): 72-75(in Chinese). doi: 10.19758/j.cnki.issn1673-288x.202005072
[10] 张睿涵. 阴极电Fenton法处理垃圾渗滤液浓缩液的研究及能耗评估[D]. 南宁: 广西大学, 2016: 2-11. ZHANG R H. Energy consumption evaluation of landfill leachate disposal using electro-Fenton[D]. Nanning: Guangxi University, 2016: 2-11(in Chinese).
[11] 王晓青, 赵成云, 罗竞红. 回灌法处理反渗透浓缩液的试验研究 [J]. 环境科技, 2015, 28(4): 18-21. doi: 10.3969/j.issn.1674-4829.2015.04.004 WANG X Q, ZHAO C Y, LUO J H. Study on pilot experiment of recirculation treatment of concentrated liquor produced by reverse osmosis [J]. Environmental Science and Technology, 2015, 28(4): 18-21(in Chinese). doi: 10.3969/j.issn.1674-4829.2015.04.004
[12] JIA C Z, WANG Y X, ZHANG C X, et al. UV-TiO2 photocatalytic degradation of landfill leachate [J]. Water, Air, & Soil Pollution, 2011, 217(1/2/3/4): 375-385. [13] 王东梅, 刘丹, 龚正君, 等. Fenton氧化-絮凝-吸附法处理垃圾渗滤液反渗透浓缩液 [J]. 科学技术与工程, 2013, 13(18): 5423-5426. doi: 10.3969/j.issn.1671-1815.2013.18.065 WANG D M, LIU D, GONG Z J, et al. Treatment of landfill leachate reverse osmosis concentrate by Fenton oxidation-coagulation-adsorption [J]. Science Technology and Engineering, 2013, 13(18): 5423-5426(in Chinese). doi: 10.3969/j.issn.1671-1815.2013.18.065
[14] 孟棒棒, 田书磊, 刘宏博, 等. 膜浓缩液淋滤飞灰后灰渣重金属热处理特性分析 [J]. 环境工程学报, 2019, 13(4): 992-999. MENG B B, TIAN S L, LIU H B, et al. Analysis on heat treatment of heavy metal in residues from fly ash leaching process by membrane concentrated leachate [J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 992-999(in Chinese).
[15] 王琛, 许继云, 邵宁宁, 等. 危废焚烧过程中二噁英和颗粒物的生成机理以及重金属迁移特征探究 [J]. 环境卫生工程, 2020, 28(4): 111-112. WANG C, XU J Y, SHAO N N, et al. A field study of polychlorinated dibenzo-p-dioxins and dibenzofurans formation mechanism in a hazardous waste incinerator: Emission reduction strategies [J]. Environmental Sanitation Engineering, 2020, 28(4): 111-112(in Chinese).
[16] TIAN X, RAO F, LI C X, et al. Solidification of municipal solid waste incineration fly ash and immobilization of heavy metals using waste glass in alkaline activation system [J]. Chemosphere, 2021, 283: 131240. doi: 10.1016/j.chemosphere.2021.131240 [17] 刘丽君, 韩静磊, 钱益斌, 等. 利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险 [J]. 环境化学, 2019, 38(5): 1014-1020. doi: 10.7524/j.issn.0254-6108.2018062002 LIU L J, HAN J L, QIAN Y B, et al. Assessment of heavy metal non-carcinogenic health risk in solidified fly ash using TTD and WOE methods [J]. Environmental Chemistry, 2019, 38(5): 1014-1020(in Chinese). doi: 10.7524/j.issn.0254-6108.2018062002
[18] TIAN S L, ZHU Y C, MENG B B, et al. Chemical speciation of lead in secondary fly ash using X-ray absorption spectroscopy [J]. Chemosphere, 2018, 197: 362-366. doi: 10.1016/j.chemosphere.2018.01.026 [19] 孟棒棒. 利用生活垃圾焚烧飞灰协同处理膜浓缩液的研究[D]. 哈尔滨: 哈尔滨理工大学, 2018: 55-57. MENG B B. Study on the synergistic treatment of membrane concentrated leachate by MSWI fly ash[D]. Harbin: Harbin University of Science and Technology, 2018: 55-57 (in Chinese)
[20] 中华人民共和国环境保护部. 固体废物 金属元素的测定 电感耦合等离子体质谱法: HJ 766—2015[S]. 北京: 中国环境科学出版社, 2015. Ministry of Environmental Protection of the People's Republic of China. Solid Waste-Determination of metals-Inductively coupled plasma mass spectrometry (ICP-MS): HJ 766—2015[S]. Beijing: China Environment Science Press, 2015(in Chinese).
[21] 龚勋. 典型西部粉煤灰中重金属元素淋滤特性研究[D]. 武汉: 华中科技大学, 2010: 82. GONG X. Leaching characteristics of heavy metal in the coal ash from West China[D]. Wuhan: Huazhong University of Science and Technology, 2010: 82 (in Chinese)
[22] 田书磊. 垃圾焚烧飞灰重金属热分离工艺及挥发特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007: 68-71. TIAN S L. Thermal-separation process and evaporation mechanism of heavy metal from MSWI fly ash[D]. Harbin: Harbin Institute of Technology, 2007: 68-71 (in Chinese)
[23] LU Q, ZHOU X Y, WU Y W, et al. Migration and transformation of lead species over CaO surface in municipal solid waste incineration fly Ash: A DFT study [J]. Waste Management, 2021, 120: 59-67. doi: 10.1016/j.wasman.2020.11.011 [24] 孙立, 吴新, 刘道洁, 等. 基于硅基的垃圾焚烧飞灰中温热处理重金属稳固化实验 [J]. 化工进展, 2017, 36(9): 3514-3522. doi: 10.16085/j.issn.1000-6613.2017-0141 SUN L, WU X, LIU D J, et al. Stabilization of heavy metals in municipal solid waste incineration fly ash using thermal treatment with silica-based material [J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3514-3522(in Chinese). doi: 10.16085/j.issn.1000-6613.2017-0141
[25] 张芝昆. 油页岩复合灰制备微晶玻璃及其固化垃圾焚烧飞灰的研究[D]. 大连: 大连理工大学, 2016: 37-40. ZHANG Z K. Preparation of glass-ceramics and solidification of solid waste incineration fly ash using oil shale fly ash-based composite ashes[D]. Dalian: Dalian University of Technology, 2016: 37-40 (in Chinese)
[26] YANG Z H, LIN Q, LU S C, et al. Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag [J]. Ceramics International, 2014, 40(5): 7297-7305. doi: 10.1016/j.ceramint.2013.12.071 [27] LI Y, TASKINEN P, WANG Y J, et al. PbSO4 reduction mechanism and gas composition at 600–1000℃ [J]. JOM, 2021, 73(3): 881-891. doi: 10.1007/s11837-020-04551-4 [28] 刘敬勇, 孙水裕, 陈涛, 等. 污泥焚烧a过程中Pb的迁移行为及吸附脱除 [J]. 中国环境科学, 2014, 34(2): 466-477. LIU J Y, SUN S Y, CHEN T, et al. Migration behavior of Pb and its vaporization control during sewage sludge incineration process [J]. China Environmental Science, 2014, 34(2): 466-477(in Chinese).
期刊类型引用(1)
1. 姚光远,刘玉强,刘景财,徐亚,黄启飞. 生活垃圾填埋场污染控制标准修订内容解析. 环境卫生工程. 2024(S1): 42-48 . 百度学术
其他类型引用(1)
-