-
水苏糖(stachyose)是天然存在的四糖,结构由一分子棉子糖中的半乳糖基以α-1,6糖苷键与另一分子半乳糖相连接构成,是唇形科水苏属植物中天然存在的能显著促进人体肠道有益菌群增殖的功能性低聚糖,被誉为“天然超强双歧因子”[1-2],被美国FAD 认定为GRAS(一般安全无毒食品) 的低聚糖产品. 目前文献主要针对水苏糖含量测定进行方法研究,主要有比色法[3]、离子色谱联用脉冲安培检测器法[4]、 高效液相色谱法[5-7]等,但鲜有关注水苏糖提取物中其他寡糖成分的定性和定量研究报道.
电喷雾检测器(charged aerosol detector,CAD)是近年来在药物分析领域运用较多的通用型检测器,已被成功应用于寡糖类化学物的分析检测[8]. 本文采用高效液相色谱-线性离子阱/静电场轨道阱高分辨质谱(HPLC-LTQ/Orbitrap-MS)鉴定了水苏糖中多种寡糖成分,建立了HPLC-CAD方法,对水苏糖提取物中蔗糖、棉子糖、甘露三糖、毛蕊花糖以及两种未知组分开展了定量方法研究,对加强水苏糖提取过程中的质量控制、保证水苏糖相关产品安全性及有效性提供研究手段和方法依据.
高效液相色谱联用高分辨质谱和电喷雾检测器定性和定量检测水苏糖提取物中寡糖成分
Qualitative and quantitative analysis of oligosaccharides in stachyose extract by high performance liquid chromatography coupled with high resolution mass spectrometry and charged aerosol detector
-
摘要: 本文建立了高效液相色谱联用电喷雾检测器(HPLC-CAD)检测水苏糖中寡糖成分的方法. 利用高效液相色谱-线性离子阱/静电场轨道阱高分辨质谱(HPLC-LTQ/Orbitrap-MS)鉴定了水苏糖中包括蔗糖、棉子糖、甘露三糖和毛蕊花糖等多种寡糖成分. 方法采用XBridge BEH Amide色谱柱(4.6 mm×250 mm,5.0 μm),乙腈-水(70:30)为流动相进行测定. 结果表明,蔗糖、棉子糖、甘露三糖质量浓度与峰面积分别在2.763—110.5 μg·mL−1、9.906—396.2 μg·mL−1和12.24—489.5 μg·mL−1范围内呈现良好线性关系(r>0.999),平均回收率(n=9)为100.1%—103.4%,RSD为1.09%—2.49%. 该方法灵敏度高,准确性好,操作简便,可用作水苏糖提取物质量控制的有效方法.Abstract: A method for the determination of oligosaccharides in stachyose by high performance liquid chromatography with charged aerosol detector (HPLC-CAD) was established. High performance liquid chromatography linear ion trap/electrostatic field orbitrap high resolution mass spectrometry (HPLC-LTQ/Orbitrap MS) was used to identify a variety of oligosaccharides in stachyose, including sucrose, raffinose, mannotriose and verbascose. The method Used XBridge BEH amide chromatographic column (4.6 mm×250 mm, 5.0 μm), acetonitrile and water (70:30) as the mobile phase for quantitative determination. The results showed that sucrose, raffinose and mannose have a good linear relationship (r>0.999) within 2.763—110.5 μg·mL−1, 9.906—396.2 μg·mL−1 and 12.24—489.5 μg·mL−1. The average recoveries (n=9) were 100.1%—103.4%. The RSD were 1.09%—2.49%. The method has high sensitivity, good accuracy and simple. It can be used as an effective method for the quality control of stachyose extract.
-
表 1 水苏糖原料中主要成份信息
Table 1. Main compounds in Stachyose
No. 理论分子量 [M+Na]+ 实测分子量[M+Na]+ 可能元素组成 偏差值 二级碎片MS2 推测成份 1 365.10543 365.10477 C12H22O11Na −1.404 203.00/184.99 蔗糖 2 527.15826 527.15765 C18H32O16Na −1.377 365.18 棉子糖 3 527.15826 527.15778 C18H32O16Na −1.035 365.23/467.17 甘露三糖 4 851.26390 851.26257 C30H52O26Na −0.485 689.32/527.28 — 5 851.26390 851.26331 C30H52O26Na −0.625 689.31 毛蕊花糖 6 851.26390 851.26306 C30H52O26Na −1.060 527.25 — 表 2 水苏糖提取物中各成分线性及灵敏度考察
Table 2. Investigation on linearity and sensitivity of components in stachyose
组分 线性范围/(μg·mL−1) 线性方程 r LOD/(μg·mL−1) LOQ/(μg·mL−1) 蔗糖 2.763—110.5 Y=0.0747X−0.1416 0.9998 0.1105 0.2210 棉子糖 9.906—396.2 Y=0.0624X−0.2635 0.9998 0.2476 0.4953 甘露三糖 12.24—489.5 Y=0.0368X−0.4150 0.9997 0.7649 1.530 水苏糖 46.44—495.3 Y=0.1351X−0.4363 0.9997 0.0527 0.1054 表 3 不同批次水苏糖提取物中各成分含量测定
Table 3. Determination of each component in different batches of stachyose extract
样品批号 蔗糖/% 棉子糖/% 甘露三糖/% 毛蕊花糖/% 最大单杂/% 杂质总量/% 201810131 0.07 0.51 0.37 0.43 0.45 0.72 201810132 0.08 0.56 0.36 0.47 0.46 0.75 201810133 0.08 0.55 0.35 0.47 0.46 0.75 -
[1] ZHANG J, SONG G S, MEI Y J, et al. Present status on removal of raffinose family oligosaccharides-a Review [J]. Czech Journal of Food Sciences, 2019, 37(3): 141-154. doi: 10.17221/472/2016-CJFS [2] ARCHER S, MENG S, WU J, et al. Butyrate inhibits colon carcinoma cell growth through two distinct pathways[J]Surgery, 1998, 124(2): 248-253. [3] DuBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J] Analytical Chemistry, 1956, 28(3): 350-356. [4] GIANNOCCARO E, WANG Y, CHEN P. Comparison of two HPLC systems and an enzymatic method for quantification of soybean sugars [J]. Food Chemistry, 2008, 106(1): 324-330. doi: 10.1016/j.foodchem.2007.04.065 [5] 郭楠, 李稳宏, 赵鹏, 等. 不同炮制地黄中水苏糖含量研究[J]. 中成药, 2008, 30 (12): 1812-1814. GUO N, LI W H, ZHAO P, et al. Study on stachyose content in Rehmannia glutinosa processed by different methods[J]. Chinese Traditional Patent Medicine, 2008, 30 (12): 1812-1814(in Chinese).
[6] KIM T B, KIM S H, SUNG S H. Quantitation of α-galactosides in Rehmannia glutinosa by hydrophilic interaction chromatography-evaporative light scattering detector [J]. Phytochemical Analysis, 2012, 23(6): 607-612. doi: 10.1002/pca.2362 [7] 陈蓉, 马冬阳, 郭彬, 等. HPLC-CAD 法结合化学计量学同时测定甘草中多种糖类[J].中国药师, 2021, 24 (10): 1932-1937. CHEN R, MA D Y, GUO B, et al. Simultaneous quantification of saccharides in glycyrrhizae radix et rhizoma by HPLC- CAD Combined with chemometrics[J]. China Pharmacist, 2021, 24 (10): 1932-1937(in Chinese).
[8] LI J, HU D J, ZONG W R, et al. Determination of inulin-type fructooligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector [J]. Journal of Agricultural and Food Chemistry, 2014, 62(31): 7707-7713. doi: 10.1021/jf502329n