-
近年来,电力行业已率先完成电站锅炉超低排放改造工作,氮氧化物 (NOx) 固定源排放控制任务的重心转移到焦化、钢铁等行业[1]。当前,烟气净化领域中应用较多的脱硝技术有选择性催化还原法 (selective catalytic reduction,SCR) 和选择性非催化还原法 (selective non-catalytic reduction,SNCR) 等。然而,由于投资运行成本高、系统复杂和氨易泄漏会造成二次污染等问题,这部分行业的超净排放任务实现难度较大[2-4]。湿法氧化脱硝技术具有操作管理简便、烟气条件适应性强和可实现多污染物同时脱除等优点,有望实现超净排放,故成为众多学者研究的热点[5]。当前研究较多的是采用向液相中投加氧化剂的形式氧化脱除烟气中的NOx,其效果虽好,但氧化剂为一次性消耗品,产生的废液需要处理。
采用电解NaCl溶液产生强氧化性的有效氯组分可用于烟气脱硝,并通过现场制备的方式可有效解决众多湿法脱硝氧化剂 (H2O2、KMnO4和NaClO2等) 储存运输过程的安全隐患及氧化成分分解消耗问题,同时脱硝液可循环电解使用,从而可有效减少氧化剂的投加成本[6]。
基于以上思路,本研究采用无隔膜法电解NaCl制备有效氯溶液,考察NaCl质量浓度、电解时间对有效氯组分生成的影响,并在自制的小型湿法鼓泡喷淋反应器中以NaCl电解液作为氧化吸收液进行模拟烟气脱硝实验,对电解氧化吸收液脱硝机理进行分析,同时考察氧化吸收体系因素 (有效氯初始质量浓度、反应体系初始pH和温度) 对烟气脱硝效果的影响,以期为低温湿法氧化脱硝技术工业化应用提供参考。
NaCl电解氧化吸收液脱除烟气中的NOx
NOx removal from flue gas by NaCl electrolytic oxidation absorption solution
-
摘要: 研究了NaCl质量浓度、电解时间对电解生成有效氯组分的影响,并以NaCl电解液作为氧化吸收液在自制的小型鼓泡喷淋吸收塔中进行模拟烟气脱硝实验,进一步研究了有效氯质量浓度、反应体系pH和温度对脱硝效果的影响,同时分析了脱硝机理。结果表明:有效氯质量浓度随着NaCl质量浓度和电解时间的增加逐渐增加,电解反应的主产物是ClO−。NOx去除率随着有效氯质量浓度增加而升高;氧化体系酸度和温度增高有利于NO氧化,但不利于NOx吸收去除。当烟气流量为2 L·min−1,NO初始质量浓度为1 340 mg·m−3,吸收液有效氯初始质量浓度为2.5 g·L−1,反应体系pH为5,温度为30 ℃时,NO的转化率可达91.1%,NOx去除率可达78.9%,且能在该条件下长时间保持较高的烟气脱硝效果。本研究结果可为低温湿法氧化脱硝技术的工业化应用提供参考。Abstract: An experiment simulating flue gas denitrification was conducted in a small bubble spray absorption tower using NaCl electrolyte as the oxidation and absorption solution. The effect of NaCl mass concentration and electrolysis time on the effective chlorine fraction generated by electrolysis was also investigated. The effects of effective chlorine mass concentration, pH and temperature of the reaction system on the denitrification effect were further studied, the denitrification mechanism was also analyzed. The results showed that the effective chlorine mass concentration increased gradually with the increase of NaCl mass concentration and electrolysis time, and the main product of the electrolysis reaction was ClO-. The removal rate of NOx increased with the increase of available chlorine mass concentration. The increase of acidity and temperature of the oxidation system was beneficial to NO oxidation, but not to NOx absorption and removal. At a flue gas flow rate of 2 L·min-1, an initial NO mass concentration of 1 340 mg·m-3, an initial absorption solution effective chlorine mass concentration of 2.5 g·L-1, a reaction system pH of 5 and a temperature of 30℃, the conversion rate of NO could reach 91.1% and the removal rate of NOx could reach 78.9%, and the high flue gas denitrification effect could be maintained for a long time under these conditions.
-
Key words:
- electrolytic oxidation /
- effective chlorine /
- flue gas denitrification /
- NOx emission
-
表 1 NaCl电解液中氧化成分、反应式以及标准电位
Table 1. Oxidation components, reaction equations and standard potentials in NaCl electrolyte
氧化成分 反应式 标准电位/eV Cl2 Cl2(aq)+2e = 2Cl− 1.358 HClO HClO+H++2e = Cl−+H2O 1.482 NaClO ClO−+H2O+2e= Cl−+2OH− 0.890 NaClO2 ClO2−+2H2O+4e = Cl−+4OH− 0.760 ClO2 ClO2+4H++5e = Cl−+2H2O 1.511 NaClO3 ClO3−+6H++6e = Cl−+3H2O 1.451 -
[1] 脱硫脱硝行业2015年发展综述[J]. 中国环保产业, 2017 (1): 6-21. [2] PATWARDHAN J A, JOSHI J B. Unified model for NOx absorption in aqueous alkaline and dilute acidic solutions[J]. AICHE Journal, 2003, 49(11): 2728-2748. doi: 10.1002/aic.690491106 [3] LIANG Z, MA X, LIN H, et al. The energy consumption and environmental impacts of SCR technology in China[J]. Applied Energy, 2011, 88(4): 1120-1129. doi: 10.1016/j.apenergy.2010.10.010 [4] ZHANG Z, LI J, TIAN J, et al. The effects of Mn-based catalysts on the selective catalytic reduction of NOx with NH3 at low temperature: A review[J]. Fuel Processing Technology, 2022, 230: 107213. doi: 10.1016/j.fuproc.2022.107213 [5] LI D, XIAO Z, AFTAB T B, et al. Flue gas denitration by wet oxidation absorption methods: current status and development[J]. Environmental Engineering Science, 2018, 35(11): 1151-1164. doi: 10.1089/ees.2017.0516 [6] GUO R T, HAO J K, PAN W G, et al. Liquid phase oxidation and absorption of NO from flue gas: A review[J]. Separation Science and Technology, 2015, 50(2): 310-321. doi: 10.1080/01496395.2014.956761 [7] 国家市场监督管理总局, 中国国家标准化管理委员会. 含氯消毒剂卫生要求[S]. 北京: 中国标准出版社, 2018-09-17. [8] 张莲英, 朱琳, 董毅. 影响五步碘量法测定二氧化氯含量的因素探讨[J]. 中国卫生检验杂志, 2005, 15(4): 504-505. [9] 张现兰, 王长德. 五步碘量法测定二氧化氯含量的影响因素研究[J]. 中国消毒学杂志, 2014, 31(11): 1164-1166. [10] ABDEL-AAL H K, SULTAN S M, HUSSEIN I A. Parametric study for saline water electrolysis: Part II—Chlorine evolution, selectivity and determination[J]. International Journal of Hydrogen Energy, 1993, 18(7): 545-551. doi: 10.1016/0360-3199(93)90172-7 [11] SZPYRKOWICZ L, CHERBANSKI R, KELSALL G H. Hydrodynamic effects on the performance of an electrochemical reactor for destruction of disperse dyes[J]. Industrial & Engineering Chemistry Research, 2005, 44(7): 2058-2068. [12] ADEWUYI Y G, OWUSU S O. Aqueous absorption and oxidation of nitric oxide with oxone for the treatment of tail gases: process feasibility, stoichiometry, reaction pathways, and absorption rate[J]. Industrial & Engineering Chemistry Research, 2003, 42(17): 4084-4100. [13] 张浩, 党小庆, 于瑞, 等. NaClO3电解液对工业废气中NOx的去除[J]. 环境工程学报, 2021, 15(1): 236-244. [14] HAN Z, YANG S, PAN X, et al. New experimental results of NO removal from simulated flue gas by wet scrubbing using NaClO solution[J]. Energy & Fuels, 2017, 31(3): 3047-3054. [15] GUO R T, GAO X, PAN W G, et al. Absorption of NO into NaClO3·NaOH solutions in a stirred tank reactor[J]. Fuel, 2010, 89(11): 3431-3435. doi: 10.1016/j.fuel.2010.03.020 [16] 何雷晶, 武斌, 陈葵, 等. Fe3+强化NaClO2溶液脱硝过程研究[J]. 化工环保, 2019, 39(6): 653-659. [17] POURMOHAMMADBAGHER A, JAMSHIDI E, ALE-EBRAHIM H, et al. Simultaneous removal of gaseous pollutants with a novel swirl wet scrubber[J]. Chemical Engineering and Processing:Process Intensification, 2011, 50(8): 773-779. doi: 10.1016/j.cep.2011.06.001 [18] 周相武, 汪晓军, 刘姣, 等. 次氯酸钠溶液的氧化性研究[J]. 氯碱工业, 2006(8): 28-30. [19] WANG J, ZHONG W. Simultaneous desulfurization and denitrification of sintering flue gas via composite absorbent[J]. Chinese Journal of Chemical Engineering, 2016, 24(8): 1104-1111. doi: 10.1016/j.cjche.2016.04.005 [20] ADEWUYI Y G, KHAN M A, SAKYI N Y. Kinetics and Modeling of the removal of nitric oxide by aqueous sodium persulfate simultaneously activated by temperature and Fe2+[J]. Industrial & Engineering Chemistry Research, 2014, 53(2): 828-839. [21] KHAN N E, ADEWUYI Y G. Absorption and oxidation of nitric oxide (NO) by aqueous solutions of sodium persulfate in a bubble column reactor[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8749-8760.