高效液相色谱-电雾式检测法测定复方益母草胶囊中盐酸水苏碱

劳永真, 苏江敏, 章军, 郭丛, 邸继鹏, 崔宇, 胡金胜, 刘艳, 徐凌川, 陈莎. 高效液相色谱-电雾式检测法测定复方益母草胶囊中盐酸水苏碱[J]. 环境化学, 2023, 42(2): 675-678.
引用本文: 劳永真, 苏江敏, 章军, 郭丛, 邸继鹏, 崔宇, 胡金胜, 刘艳, 徐凌川, 陈莎. 高效液相色谱-电雾式检测法测定复方益母草胶囊中盐酸水苏碱[J]. 环境化学, 2023, 42(2): 675-678.
LAO Yongzhen, SU Jiangmin, ZHANG Jun, GUO Cong, DI Jipeng, CUI Yu, HU Jinsheng, LIU Yan, XU Lingchuan, CHEN Sha. Determination of stachydrine hydrochloride in compound leonurus japonicus capsules by high performance liquid chromatography-charged aerosol detector[J]. Environmental Chemistry, 2023, 42(2): 675-678.
Citation: LAO Yongzhen, SU Jiangmin, ZHANG Jun, GUO Cong, DI Jipeng, CUI Yu, HU Jinsheng, LIU Yan, XU Lingchuan, CHEN Sha. Determination of stachydrine hydrochloride in compound leonurus japonicus capsules by high performance liquid chromatography-charged aerosol detector[J]. Environmental Chemistry, 2023, 42(2): 675-678.

高效液相色谱-电雾式检测法测定复方益母草胶囊中盐酸水苏碱

Determination of stachydrine hydrochloride in compound leonurus japonicus capsules by high performance liquid chromatography-charged aerosol detector

  • 摘要: 盐酸水苏碱是复方益母草胶囊的主要质控成分,目前主要使用高效液相色谱-蒸发光散检测法(HPLC-ELSD)测定其含量. 本文采用高效液相色谱-电雾式检测器法(HPLC-CAD),建立定量测定复方益母草胶囊中盐酸水苏碱的新分析方法,快速有效的评价复方益母草胶囊的质量. 对比ELSD和CAD不同检测器的检测限(LOD)和定量限(LOQ),考察市场不同型号色谱柱对复方益母草胶囊中盐酸水苏碱的分离效果,以及提取溶剂对盐酸水苏碱提取效率的影响。结果表明,盐酸水苏碱浓度在9.3—465.0 μg·mL−1范围内具有良好的线性关系,相关系数(r)为0.9995. 方法精密度、重复性和24 h稳定性RSD值均小于2.0%(n=6),盐酸水苏碱加样回收率在95.7%—99.2%范围内,RSD值为1.1%. 5批复方益母草胶囊盐酸水苏碱含量每粒14.94—15.92 mg,均符合《中国药典》(2020版)一部复方益母草胶囊含量要求. 批内一致性PA为6.5%,批间一致性PB为28.9%.
  • 油页岩是一种含有有机矿物质的可燃性沉积岩,属于非常规化石能源[1]。油页岩储量丰富,其热解(干馏)衍生的页岩油与原油相似,是石油的理想替代品[2]。油页岩热解产生的热解气和半焦还可作为燃料直接燃烧发电,因此,油页岩具有非常重要的开发价值。

    抚顺炉干馏技术是目前国内比较成熟的油页岩热解工艺,其利用高温的干馏气或半焦燃烧烟气即气体热载体提供热量,具有原料适应性广、能处理贫矿、投资小、运行可靠等优势[3]。但是,抚顺炉技术只能处理块状油页岩,对于油页岩开采、运输、破碎及除尘过程中产生的大量直径25 mm以下的小颗粒油页岩无法适用,因而造成了大量的资源浪费和环境污染[4]。因此,如何利用小颗粒油页岩资源成为油页岩开发亟需解决的技术难题。

    近年来,国内外对小颗粒油页岩热解技术进行了一系列研究,主要集中于固体热载体工艺,即以半焦燃烧产生的高温页岩灰作为热载体的一种热解工艺。如爱沙尼亚Galoter工艺、加拿大ATP工艺、大工DG工艺、德国Lurigi-Ruhrgas工艺等,但从现有运行效果看,主要存在粉尘量大造成设备堵塞、设备难以稳定运行以及油尘分离困难等问题[5-8],故目前多处在中试或示范阶段。间接加热回转窑热解技术是一种可处理小颗粒油页岩的热解工艺[9],其通过高温烟气对油页岩进行间接加热。由于该工艺不需要与高温热载体混合,故系统中粉尘含量大幅度降低,但目前间接加热工艺多局限于实验室小试研究,其工艺成熟度、装备化程度及处理能力无法满足大规模应用需要,难以指导工程施工[10]

    本研究以小颗粒油页岩间接加热回转窑热解工程项目为例,探讨间接加热热解工艺用于小颗粒油页岩处理的效果;并重点分析间接加热回转窑热解工艺工程应用存在的问题及解决措施,以期为小颗粒油页岩间接加热热解技术的工业化应用提供参考。

    本项目实验物料为辽宁地区产生的小颗粒油页岩,物料总量为65 t。如图1所示,油页岩呈颗粒状(15~30 mm)和粉状(<8 mm);经铝甄实验法测得其平均含水率为9.3%、含油率为3.5%、半焦产率为82.3%。

    图 1  辽宁地区小颗粒油页岩
    Figure 1.  Oil shale of small particles from Liaoning Province

    1)铝甄实验。将试样装于铝甄中,在隔绝空气条件下加热到500 ℃,并保持一定的时间。干馏后测定所得油、水、半焦和干馏副产物的收率。

    2)热量分析。将一定质量的样品置于密封容器(氧弹)中,通入氧气,点火使之完全燃烧,燃烧所放出的热量传给周围的水,通过测量水升高的温度计算样品能量值及热值。

    3)有机质含量。将一定质量的样品置于瓷坩埚中,放入马弗炉中(600 ℃)灼烧1 h,根据样品减少的质量计算有机质含量。

    间接加热回转窑热解工艺是采用间接加热的方式将油页岩加热到设定温度,使油页岩中的水分和油母质受热挥发和气化分解,进而从油页岩中脱附出来;脱附出来的油蒸气随水蒸气一同进入后端冷凝设施,使其转移至液相或固相中,最终实现油页岩中油的回收。

    间接加热回转窑热解工艺与气体热载体抚顺炉工艺相比,具有采用连续进料、相同规模设备占地面积小、易于安装维护、可处理小颗粒油页岩的优点。由于气体热载体不与油页岩物料直接接触,馏分气体浓度高,故后续气体冷凝负荷小;此外,加热温度和炉腔内含氧量可控,油蒸汽不易发生二次裂解和燃烧,故油回收率高。

    与固体热载体ATP及大工工艺相比,间接加热回转窑热解工艺加热速率可控,可避免热固载体工艺加热速率过快导致的油品重质组分过高或油蒸汽的二次裂解;而且无高温物料返混,可降低馏分气体粉尘夹带量。此外,设备内无复杂结构部件,维护操作方便。但间接加热回转窑热解工艺受自身传热方式的局限,相对气体及固体热载体工艺热利用率相对较低。

    实验设备采用杰瑞环保科技有限公司针对小颗粒油页岩热解自主研发的间接加热回转窑热解成套设备,整体外观如图2所示。间接加热回转窑热解成套设备由进料系统、热解系统、出料系统、冷凝系统、沉降分离系统、气处理系统、换热系统、散热系统等组成,具体设备组成如表1所示。其中,回转窑设备内部设置清理结构,防止回转窑内壁形成板结层影响传热;回转窑和喷淋头间管路设置清理结构,防止粉尘堵塞管路。成套设备占地20×30 m,设备布局如图3所示。

    图 2  油页岩间接加热回转窑热解成套设备现场图
    Figure 2.  Indirect heating rotary kiln pyrolysis plant equipment for oil shale
    表 1  间接加热回转窑热解成套设备组成
    Table 1.  Compositions of indirect heating rotary kiln pyrolysis equipment
    系统名称设备名称数量/台系统名称设备名称数量/台
    进料系统进料斗1出料系统螺旋输送机1
    皮带秤1出料气锁1
    皮带输送机1刮板输送机1
    进料螺旋1喷淋螺旋输送机1
    进料气锁1冷凝系统喷淋塔1
    热解系统回转窑1散热系统闭式冷却塔1
    助燃风机1缓存水箱1
    燃烧器10循环水泵2
    沉降分离系统沉降分离罐1气体净化系统气液分离罐3
    工艺水泵2高压风机2
    储油罐1换热系统螺旋板式换热器1
     | Show Table
    DownLoad: CSV
    图 3  间接加热回转窑热解成套设备布局图
    Figure 3.  Layout of indirect heating rotary kiln pyrolysis equipment

    本项目采用间接加热工艺进行小颗粒油页岩热解工程实验,工艺流程如图4所示。油页岩原料通过进料系统连续进入热解系统中,通过天然气燃烧产生的高温烟气对回转窑中的油页岩进行间接加热;热解后产生的页岩半焦通过出料系统降温除尘后连续排出;油页岩热解产生的高温热解混合油气在冷凝系统中经循环喷淋水进行直接冷凝、除尘;冷凝后的油水混合物通过沉降分离系统进行油、水的分离;分离的回收油通过油罐储存,分离的水经换热系统冷却后进入冷凝系统作为喷淋水循环利用,未冷凝的不凝气经气处理系统净化后经风机引出进入回转窑热解系统作为补充燃料燃烧。

    图 4  油页岩热解工艺流程图
    Figure 4.  Process flow diagram of oil shale pyrolysis

    将小颗粒油页岩物料以1.5~4.5 t·h−1的进料速度由进料系统连续输送至热解系统进行热解处理,采用天然气燃烧产生的高温烟气对油页岩进行间接加热。其中,回转窑物料腔压力控制在−30~−100 Pa,烟气温度控制在600~800 ℃,物料停留时间20~45 min,出料温度控制在400 ℃以上。热解产生的混合气经冷凝系统降温至70 ℃以下,使热解气中大部分油、水蒸汽冷凝,随后进入沉降分离系统进行进一步分离;页岩半焦经出料系统降温至100 ℃以下后收集储存。系统运行结束后,对收集的半焦、回收油、回收水、底泥进行分析,同时考察回转窑和冷凝设备之间设备管道含尘情况及回转窑设备内板结情况。

    油页岩蒸发、裂解产生的油水混合气体及携带的粉尘经冷凝后在沉降分离系统进行分离,分离后在沉降分离设备内自下而上分别形成底泥层、回收水层、浮渣和回收油层,具体油、水、固组成如表2所示。65 t油页岩原料产生油组分2.1 t,实际回收油2.0 t。根据铝甄实验结果可知,油页岩热解产油量可达92.3%;本工程实际油回收率为铝甄实验产油量的88%。本研究结果高于抚顺炉工艺(65%)及ATP工艺(70~80)的油回收率[10]。本研究中回转窑设备馏分气体携尘率为1.2 %,此结果远低于固体热载体ATP工艺中的馏分气体携尘率[6]

    表 2  油页岩热解回收物料组成
    Table 2.  Compositions of oil shale pyrolysis recovery materials
    产物类别含油率/%含水率/%含固率/%产量/t
    底泥22.742.534.81.5
    回收水<0.01>99.9<0.014.8
    浮渣13.556.629.90.3
    回收油88.42.59.12.0
     | Show Table
    DownLoad: CSV

    实验过程中,油页岩热解产生的页岩半焦出料温度可稳定保持在450 ℃以上。如图5(a)所示,工程实验页岩半焦呈黑色松散状,与铝甄实验半焦(图5(b))表观性质类似。对油页岩原料和不同处理量条件下的页岩半焦进行有机质含量分析,热解处理后油页岩有机质含量由13.0%降至4.0%以下,不同处理量下(2.0、3.0、4.5 t·h−1)工程实验半焦的有机质含量分别为2.7%、3.5%和4.0%,均低于铝甑实验半焦(4.1%)。这说明,本工程实验实际处理(出料)温度达到甚至高于铝甄实验温度(500 ℃),即在工程实验温度下可以达到铝甄实验的油组分产量,这和油页岩热解回收物料分析中较高的油回收率结果一致。

    图 5  工程实验和铝甄实验页岩半焦
    Figure 5.  Oil shale coke of engineering experiment and aluminum retort experiment

    此外,随着油页岩处理量的提高,半焦有机质含量相应增加。其可能的原因是,随着料层厚度增加,回转窑炉壁辐射热降低,使得物料实际达到的处理温度降低,因而不利于油母质的裂解。当油页岩处理量在4.5 t·h−1时,页岩半焦有机质质量分数可达4.1%,仍低于铝甄实验半焦。这说明,当间接加热回转窑设备处理量达4.5 t·h−1时,仍能保持较高的处理温度及油回收率。然而,若进一步提升油页岩处理量,则需要额外增加热量以提升物料的处理温度。此外,对半焦样品进行热量分析,得到页岩半焦平均热值为400 kJ·kg−1,半焦仍保留一定的热值,可以为进一步的综合利用提供热量。

    对油页岩间接加热回转窑热解工程进行能量消耗统计发现,65 t油页岩原料平均进料量2.8 t·h−1、平均天然气耗量55.8 Nm3·t−1、成套设备平均运行功率181.7 kW、平均电耗64.9 kWh·t−1,不同处理量下具体能耗见图6。如图所示,随着处理量的提高,油页岩热解能耗逐渐降低,热效率逐渐升高。这可能是在低处理量阶段,回转窑内料层厚底低,炉壁热辐射使物料实际达到的温度高于设定处理温度,从而使能耗增加,导致热效率降低。当处理量提高到较高水平时,料层厚度增加,实际物料温度接近控制温度,这和页岩半焦有机质含量结果一致。当处理量提高至4.5 t·h−1时,天然气消耗降至40.1 Nm3·t−1、实际热效率达到41.6%,高于抚顺炉技术(24.9 Nm3·t−1)和ATP技术(22.6 Nm3·t−1)的能耗[5]。这和抚顺炉和ATP技术热解过程中利用了页岩半焦燃烧的热量有关。因此,为进一步降低间接加热回转窑工艺能耗,可在油页岩热解工艺设计时,统筹资源优化配置,在页岩半焦资源化利用时合理利用页岩半焦煅烧产生的高温烟气。同时,由于采用间接加热方式,可根据油页岩综合利用厂区实际情况,利用厂区废高温烟气为间接加热回转窑热解设备提供热量,从而节省天然气资源,最终降低油页岩热解综合成本。此外,还可通过在回转窑燃烧腔设计导流挡板,优化烟气流动方向,降低排烟温度,提升回转窑热效率,最终达到降低综合能耗的目的。

    图 6  不同处理量下油页岩热解能耗
    Figure 6.  Energy consumption of oil shale pyrolysis under different treatment capacity

    在油页岩热解工程实验过程中,间接加热回转窑热解成套设备运转良好,进出料设备运行顺畅,冷凝系统运行稳定。回转窑物料腔维持在−20~−100 Pa微负压运行,无油气泄漏现象发生。如图7(a)所示,回转窑物料腔内壁无板结物料,说明回转窑内清理结构可实现破板结作用,有利于油页岩在回转窑内的传热。如图7(b)所示,热解混合气管道内无粉尘堆积,说明管道内清理结构可在线实现粉尘的有效清理,管道不易堵塞,验证了间接加热回转窑热解设备应用于油页岩热解处理的可行性。此外,间接加热回转窑热解设备安装操作方便,运行稳定。

    图 7  回转窑物料腔和热解混合气管道内壁
    Figure 7.  Material cavity of the rotary kiln and inner wall of pyrolysis mixture pipe

    尽管间接加热回转窑可大幅度降低粉尘携带量,但回收油的含固率仍较高,浮渣和底泥副产物较多。这可能与本工艺采用的直接冷凝方式有关。直接冷凝设备中热解混合气的冷凝和粉尘的沉降同时进行,导致冷凝油和粉尘结合密切,不易分离。因此,为提高回收油品质,降低底泥和浮渣产量,应进一步优化除尘及冷凝工艺,建议后续采用分级冷凝的方式,先对高温热解气进行除尘净化,之后再进行油分的冷凝回收,提高油的分离效率。

    此外,间接加热回转窑设备实际处理温度与物料检测控制温度存在一定差异,导致在低处理量时实际处理温度过高,能耗增加。因此,需改进物料检测仪表及布置方式,提高物料温度控制准确度,平衡处理量和能耗的关系。

    1)小颗粒油页岩间接加热回转窑热解工艺可使出料温度达到500 ℃以上、热解气粉尘携带量低,油回收率高于同类技术;同时,页岩半焦保留了一定的热值。

    2)间接加热回转窑热解设备占地面积小,安装操作方便,无物料板结和管道粉尘堵塞现象;设备运行稳定,维护成本低,可利用厂区废热降低运行成本。

    3)间接加热回转窑设备进行油页岩热解存在回收油含固量高以及系统能耗高、热效率低、温度检测存在误差的问题,后期需进一步对除尘冷凝工艺及烟气热量利用进行优化设计。

  • 图 1  盐酸水苏碱对照品、供试品、阴性对照HPLC-CAD色谱图 (A)盐酸水苏碱对照品 (B)供试品 (C)阴性对照

    Figure 1.  HPLC-CAD chromatogram of stachydrine hydrochloride reference, test and negative control (A) stachydrine hydrochloride control (B) test article (C) negative control

    表 1  盐酸水苏碱回收率(n=2)

    Table 1.  Recovery rate of stachydrine hydrochloride(n=2)

    序号取样量/g样品含有量/mg 加标量/mg测得量/mg回收率/%平均回收率/%相对标准偏差/%
    10.10423.48213.34206.797299.195397.371.14
    20.10953.53893.34206.790497.2901
    30.10793.60583.34206.804095.6998
    40.10313.44543.34206.671796.5381
    50.10963.66263.34206.932897.8527
    60.10623.54893.34206.838798.4361
    70.10403.47543.34206.709396.7638
    80.10473.49883.34206.748197.2262
    序号取样量/g样品含有量/mg 加标量/mg测得量/mg回收率/%平均回收率/%相对标准偏差/%
    10.10423.48213.34206.797299.195397.371.14
    20.10953.53893.34206.790497.2901
    30.10793.60583.34206.804095.6998
    40.10313.44543.34206.671796.5381
    50.10963.66263.34206.932897.8527
    60.10623.54893.34206.838798.4361
    70.10403.47543.34206.709396.7638
    80.10473.49883.34206.748197.2262
    下载: 导出CSV
  • [1] 李锟, 王树真, 李乐, 等. 益母草的化学成分和药理作用研究进展 [J]. 广东化工, 2014, 41(2): 54-55. doi: 10.3969/j.issn.1007-1865.2014.02.028
    [2] 乔晶晶, 吴啟南, 许一鸣, 等. HPLC法同时测定益母草中4种成分 [J]. 中成药, 2018, 40(11): 2467-2471. doi: 10.3969/j.issn.1001-1528.2018.11.021
    [3] 伍涛, 肖裕章, 李成洪, 等. HPLC-DAD法测定益母草颗粒中盐酸水苏碱含量的方法 [J]. 甘肃农业大学学报, 2020, 55(3): 23-28,37.
    [4] 宋珊, 郭红丽, 康江鹏. HPLC-ESI-MS/MS同时测定八珍益母丸中9种有效成分 [J]. 中草药, 2019, 50(2): 402-407. doi: 10.7501/j.issn.0253-2670.2019.02.019
    [5] 胡彬, 越亮, 孙建彬, 等. HPLC-ELSD梯度洗脱法测定八珍益母丸(浓缩丸)中水苏碱的含量 [J]. 中国药品标准, 2022, 23(1): 91-94.
    [6] 李伟, 张建军, 王小花, 等. HPLC-ELSD测定益母草颗粒中盐酸水苏碱的含量 [J]. 中国实验方剂学杂志, 2018, 24(23): 100-103.
    [7] 黄强增. HPLC-RID法测定益母草颗粒中盐酸水苏碱含量 [J]. 海峡药学, 2012, 24(11): 63-65. doi: 10.3969/j.issn.1006-3765.2012.11.027
    [8] 尹金磊, 关素珍. 益母草饮片中盐酸水苏碱、益母草碱含量测定的应用研究 [J]. 中国中医基础医学杂志, 2015, 21(4): 459-460,471.
    [9] 王莹, 刘芫汐, 岳洪水, 等. 电喷雾式检测器与蒸发光散射检测器用于注射用益气复脉中糖成分测定比较及方法准确性探讨 [J]. 中国中药杂志, 2020, 45(22): 5511-5517.
  • 期刊类型引用(6)

    1. 贾郁菲,陈宏坪,张文影,艾雨露,陈梦舫. 甲壳生物质修复废弃煤矿酸性矿坑水研究进展. 环境保护科学. 2024(02): 1-7 . 百度学术
    2. 徐秀月,王宁宁,任军,董慧林. SRB对AMD湿地处理系统沉积物中重金属的钝化作用研究. 金属矿山. 2024(10): 265-272 . 百度学术
    3. 高羽,刘雨辰,郭晓方,吉莉,张桂香,张哲海,夏红丽,何文峰,张博远. 硫酸盐还原菌对碱性和酸性农田土壤中重金属的钝化效果及其作用机制. 环境科学. 2022(12): 5789-5797 . 百度学术
    4. 王继勇,黄品源,何伟. 土豆为缓释碳源负载SRB处理模拟含镉酸性废水. 华中师范大学学报(自然科学版). 2021(02): 244-249+269 . 百度学术
    5. 张珊. 矿山开采工程中酸性废水治理技术及对策简析. 世界有色金属. 2021(03): 51-52 . 百度学术
    6. 沈蔡龙,张广积,杨超. 微生物法治理含砷酸性矿山废水的研究进展. 黄金科学技术. 2020(06): 786-791 . 百度学术

    其他类型引用(4)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0400.250.50.7511.25Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.0 %DOWNLOAD: 3.0 %HTML全文: 97.0 %HTML全文: 97.0 %DOWNLOADHTML全文Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.6 %其他: 99.6 %XX: 0.1 %XX: 0.1 %保定: 0.0 %保定: 0.0 %北京: 0.1 %北京: 0.1 %漯河: 0.1 %漯河: 0.1 %长沙: 0.0 %长沙: 0.0 %其他XX保定北京漯河长沙Highcharts.com
图( 1) 表( 1)
计量
  • 文章访问数:  2347
  • HTML全文浏览数:  2347
  • PDF下载数:  31
  • 施引文献:  10
出版历程
  • 刊出日期:  2023-02-27
劳永真, 苏江敏, 章军, 郭丛, 邸继鹏, 崔宇, 胡金胜, 刘艳, 徐凌川, 陈莎. 高效液相色谱-电雾式检测法测定复方益母草胶囊中盐酸水苏碱[J]. 环境化学, 2023, 42(2): 675-678.
引用本文: 劳永真, 苏江敏, 章军, 郭丛, 邸继鹏, 崔宇, 胡金胜, 刘艳, 徐凌川, 陈莎. 高效液相色谱-电雾式检测法测定复方益母草胶囊中盐酸水苏碱[J]. 环境化学, 2023, 42(2): 675-678.
LAO Yongzhen, SU Jiangmin, ZHANG Jun, GUO Cong, DI Jipeng, CUI Yu, HU Jinsheng, LIU Yan, XU Lingchuan, CHEN Sha. Determination of stachydrine hydrochloride in compound leonurus japonicus capsules by high performance liquid chromatography-charged aerosol detector[J]. Environmental Chemistry, 2023, 42(2): 675-678.
Citation: LAO Yongzhen, SU Jiangmin, ZHANG Jun, GUO Cong, DI Jipeng, CUI Yu, HU Jinsheng, LIU Yan, XU Lingchuan, CHEN Sha. Determination of stachydrine hydrochloride in compound leonurus japonicus capsules by high performance liquid chromatography-charged aerosol detector[J]. Environmental Chemistry, 2023, 42(2): 675-678.

高效液相色谱-电雾式检测法测定复方益母草胶囊中盐酸水苏碱

  • 1. 山东中医药大学,济南,250355
  • 2. 中国中医科学院中药研究所,北京,100700
  • 3. 赛默飞世尔科技(中国)有限公司,上海,201206

摘要: 盐酸水苏碱是复方益母草胶囊的主要质控成分,目前主要使用高效液相色谱-蒸发光散检测法(HPLC-ELSD)测定其含量. 本文采用高效液相色谱-电雾式检测器法(HPLC-CAD),建立定量测定复方益母草胶囊中盐酸水苏碱的新分析方法,快速有效的评价复方益母草胶囊的质量. 对比ELSD和CAD不同检测器的检测限(LOD)和定量限(LOQ),考察市场不同型号色谱柱对复方益母草胶囊中盐酸水苏碱的分离效果,以及提取溶剂对盐酸水苏碱提取效率的影响。结果表明,盐酸水苏碱浓度在9.3—465.0 μg·mL−1范围内具有良好的线性关系,相关系数(r)为0.9995. 方法精密度、重复性和24 h稳定性RSD值均小于2.0%(n=6),盐酸水苏碱加样回收率在95.7%—99.2%范围内,RSD值为1.1%. 5批复方益母草胶囊盐酸水苏碱含量每粒14.94—15.92 mg,均符合《中国药典》(2020版)一部复方益母草胶囊含量要求. 批内一致性PA为6.5%,批间一致性PB为28.9%.

English Abstract

  • 复方益母草胶囊是由益母草、当归和熟地3味药材经过一定的工序加工制成的复方制剂,该胶囊主要药味益母草中含有生物碱类、黄酮类、二萜类、苷类、脂肪酸类、挥发油类等成分[1]. 生物碱类盐酸水苏碱是益母草的主要药效成分[2]. 盐酸水苏碱是季胺碱,极性强,无共轭结构,紫外吸收弱,属于末端吸收. 高效液相色谱法是盐酸水苏碱目前最为普遍的检测方法,盐酸水苏碱常用的检测器有紫外检测器 (DAD等) [3]、质谱检测器(MS)[4]、示差检测器(RID)和蒸发光散射检测器 (ELSD) [5]等,目前尚未报道电雾式检测器(CAD)被用于盐酸水苏碱的定量分析. 用紫外检测器测定盐酸水苏碱,存在方法重复性差、溶剂末端吸收干扰、梯度洗脱时容易出现基线漂移检测不稳定等局限性[6];依据盐酸水苏碱的结构中有旋光性的特点,采用RID检测器测定其含量,无需特殊样品处理方法就有很好的峰形,但专属性不强、灵敏度较低,且不能使用梯度洗脱分离效果不佳,应用相对较少[7-8];ELSD检测器是目前定量分析盐酸水苏碱最常用的检测器,据报道其灵敏度也较低[9]. 电雾式检测器(CAD)是一种质量相关的通用型检测器,其检测信号不依赖于被测物质的化学结构,更适用于无紫外吸收或只有较弱紫外吸收成分的定量分析.

    本研究利用Thermo-fisher AcclaimTM Mixed-Mode WAX-1色谱柱结合HPLC-CAD法分离测定复方益母草胶囊中主要成分盐酸水苏碱含量,探讨该方法对比现行《中国药典》(2020版)一部中ELSD测定盐酸水苏碱的优势,为其质量评价和标准制定提供理论依据,同时为未来推广到其它含益母草类制剂中使用提供科学参考,具有现实应用价值,且目前缺少相关报道.

    • 试剂:甲酸分析纯(纯度99.9%)(天津市科密欧化学试剂有限公司);甲酸铵质谱级(纯度99%)(Roe Scientific Inc公司);无水乙醇分析纯(天津市富宇精细化工有限公司);甲醇HPLC级(上海星可高纯溶剂有限公司);乙腈HPLC级(上海星可高纯溶剂有限公司);屈臣氏饮用水(广州屈臣氏食品饮料有限公司);盐酸水苏碱对照品(纯度98.91%)(成都普思生物科技股份有限公司).

      液相色谱(美国赛默飞公司),Vanquish Core系列双三元泵:VC-P33-A-01;自动进样器:VC-A12-A-02;柱温箱:Column compartment VC-C10-A-03;可变波长检测器:Variable Wavelength Detector VC-D40-A-01;CAD检测器:Charged Aerosol Detector H VH-D20-A;变色龙色谱管理软件 Chromeleon CDS 7.3; Waters Acquity超高效液相色谱仪ELS Detector检测器;电子天平 YP30002(上海佑科仪器仪表公司);分析天平 B931029762(北京艾斯瑞克商贸公司);超声仪 KQ-250DB(昆山市超声仪器公司)。

      色谱柱:AccucoreTM-Amide-HILIC(150 mm × 4.6 mm,5 µm, Thermo-Fisher公司);AcclaimTM Mixed-Mode WAX-1(250 mm × 4.6 mm,5 µm, Thermo-Fisher公司); AcclaimTM Mixed-Mode WCX-1(250 mm × 4.6 mm,5 μm, Thermo-Fisher 公司);Ascentis Express OH5 (150 mm × 4.6 mm,2.7 µm, 美国merck公司);Polar-Phenyl (250 mm × 4.6 mm,5 µm, 济南赛畅科学仪器有限公司);ShimNex HE Amide (250 mm × 4.6 mm,5 µm ,岛津中国公司);Poroshell 120 HILIC-Z (150 mm × 4.6 mm,2.7 µm, 安捷伦公司);Venusil HILIC (250 mm × 4.6 mm,5 µm,Agelag公司);XBridge BEH Amide (150 mm × 4.6 mm,5 µm Waters公司);60-5-HILIC-D (250 mm × 4.6 mm,5 µm Kromasil公司); XBridge Amide (250 mm × 4.6 mm,5 µm Waters公司).

    • 对照品溶液 取盐酸水苏碱对照品适量,精密测定,加入70%乙腈(乙醇)制成每1mL含0.5 mg的溶液,即得.

      供试品溶液 按2020版《中国药典》方法制备,取装量差异项下的复方益母草胶囊内容物,混匀,研细,取约0.5 g,精密称定,置具塞锥形瓶中,精密加入70% 乙腈(乙醇)25 mL,称定重量,加热回流2 h,放冷,再称定重量,用70%乙腈(乙醇)补足减失的重量,摇匀,滤过,取续滤液,即得.

      阴性对照的制备:按照复方益母草胶囊处方药物组成,不加益母草和辅料,同供试品制备方法.

    • 精密量取盐酸水苏碱对照品储备液1 mL,分别置于5、10、20、50、100 mL容量瓶中,至刻度. 再精密量取1 mL上述50 mL容量瓶溶液置于10 mL、25 mL容量瓶中,加70%乙醇置刻度,摇匀. 按照《中国药典》(2020版)一部复方益母草胶囊方法,采用AccucoreTM-150-Amide-HILIC (150 mm × 4.6 mm, 5 µm)色谱柱,以乙腈-0.2%冰醋酸溶液(80∶20)为流动相,进样量5 μL,分别用ELSD和CAD检测器测定盐酸水苏碱的信噪比,进行灵敏度对比. 按信噪比3∶1及10∶1计算,盐酸水苏碱的检测限(LOD)和定量限(LOQ)结果显示,CAD检测限是ELSD的34倍,定量限是37倍,表明CAD有更好的灵敏度.

    • 取盐酸水苏碱标准品适量,分别采用10种不同厂家的色谱柱进行测定,其中Poroshell 120 HILIC-Z和AcclaimTM Mixed-Mode WAX-1色谱柱对复方益母草中盐酸水苏碱分离效果最好,前者理论塔板数高达26430,后者理论塔板数18413,且前后无干扰峰,因此本研究最终选择AcclaimTM Mixed-Mode WAX-1柱子作为盐酸水苏碱的定量分析.

    • 盐酸水苏碱是最简单的吡咯生物碱,其分子结构含有季铵根和羧基,极性较强。实验室尝试了 Acclaim Mixed-Mode WAX-1 和 WCX-1 两款色谱柱的 RP+IEX 保留模式,保留均较弱。其中 Acclaim Mixed-Mode WAX-1 色谱柱键合相为带有叔胺末端的疏水烷基链键合硅胶,除去反相保留(RP)和弱阴离子交换(WAX),还可提供亲水作用(HILIC)保留机制。经试验确定采用 Acclaim Mixed-Mode WAX-1 色谱柱的 HILIC 模式进行盐酸水苏碱的分离保留效果优异,因而流动相有机相优先选择乙腈。由于 Acclaim Mixed-Mode WAX-1 色谱柱必须始终使用含有缓冲盐的流动相进行活化、分析或保存,在配合 CAD 使用时,须使用挥发性缓冲盐,流动相水相可选用甲酸铵或乙酸铵。

      除了色谱柱和流动相的选择外,供试品溶液的制备也需要重点考察。取复方益母草胶囊数粒去壳,将内容物混匀研细,取0.2 g,精密称定,置具塞三角瓶中,分别精密加入30%、50%、70%的甲醇,30%、50%、70%的乙醇和30%、50%、70%的乙腈,超声提取40 min(功率250 W,频率40 kHz),冷却至室温,摇匀. 离心5 min(5000 r·min−1)。转移至25 mL容量瓶并定容至刻度,经0.45 μm微孔滤膜过滤,取续滤液,即得. 进样检测,计算各提取溶剂下盐酸水苏碱的相对含量. 3种不同浓度的乙腈对盐酸水苏碱成分提取效果最好,在 HILIC 模式下,流动相通常推荐使用非质子溶剂乙腈,并且初始流动相为较高比例的乙腈,当对照品或供试品溶液乙腈比例较低时,进样后容易形成溶剂效应,影响水苏碱的峰形和响应。试验表明,采用 70% 乙腈水提取效果较好,因此本研究最终选择70%乙腈作为提取溶剂.

      最终确定以CAD为检测器,采用AcclaimTM Mixed-Mode WAX-1(250 mm×4.6 mm,5 μm)柱,以20 mmol·L-1 甲酸铵 (甲酸调节 pH至 4.0) (A)-乙腈(B)为流动相,梯度洗脱:0—8 min,10%A;8—12 min,10%—50%A;12—15 min,50%A;15—20 min,50%—10%A. 柱温30 ℃,蒸发温度35 ℃;采集频率 5 Hz,过滤常数 3.6 s;进样体积5 μL. 该色谱条件通过系统考察得到较好的分离效果.

    • 分别取盐酸水苏碱标准对照品溶液,供试品溶液,缺益母草阴性对照液适量,注入高效液相色谱仪,按2.3节色谱条件进样测定. 供试品色谱图中出现与标准对照品中保留时间相同的峰,且理论塔板数不低于18000,缺益母草阴性对照色谱图中显示阴性样品无干扰,表明该方法专属性较好(图1).

      取盐酸水苏碱对照品溶液,按2.3节色谱条件连续进样6次,记录峰面积,结果峰面积RSD为1.13%. 按上述样品制备方法,制备供试品溶液,分别于0、2、6、10、24 h进样,RSD为1.93%,表明供试品在24 h内稳定性良好. 取同一批号样品(批号:20220301),按2.3节方法平行制备6份供试品溶液,在2.3节色谱条件进样分析,样品中盐酸水苏碱平均含量33.4 mg·g−1,RSD为1.38%.

      采用加样回收法,精密称取0.1 g已知含量的复方益母草胶囊样品8份,分别加入适量的盐酸水苏碱标准品,按2.3节供试品制备方式制备供试品. 计算加样回收率在95.70%—99.20%,平均回收率97.37%,RSD为1.14%(表1).

      精密称量盐酸水苏碱对照品9.30 g于20 mL容量瓶中,加70%乙腈水溶液逐级稀释,制成盐酸水苏碱浓度分别为0.465、0.279、0.186、0.093、0.047、0.019 mg·mL−1,按2.3项下色谱条件下进样分析,记录相应峰面积. 以待测组分质量浓度(X)为横坐标,以峰面积(Y)为纵坐标,对一次曲线和二次曲线进行了比较,一次曲线函数为Y=52.989X+1.5521,r2为0.9862,二次曲线函数为Y=-54.114X2+78.28X+0.4612,r2为0.9995,二次曲线拟合较好,故选二次曲线进行计算.

    • 依据前述盐酸水苏碱含量测定方法,分别对随机选取的同批次和不同批次(5批)复方益母草胶囊中盐酸水苏碱含量进行测定,分别计算其批内(PA)和批间(PB)盐酸水苏碱含量的差异值.结果表明,复方益母草胶囊批内差异PA值为6.3%,反映该厂家与益母草相关的生产工艺较稳定. 批间一致性差异较大,每粒含量12.00—16.14 mg不等,PB值为28.98%,推测可能是益母草原料质量差异造成.

    • 通过对比10种亲水型作用色谱柱(HILIC),最终确定利用Acclaim Mixed-Mode WAX-1色谱柱键合相的叔胺官能团,在 HILIC 模式下对水苏碱的强保留能力,可有效与供试品杂质峰分离,避免基质干扰。采用乙腈-20 mmol·L−1 甲酸铵缓冲液 (pH=4.0) = 90:10作为初始流动相进行梯度洗脱,配合CAD检测器测定盐酸水苏碱含量, 结果显示CAD具有较高的灵敏度,为定量分析盐酸水苏碱提供了新方法新参考. 本研究所建立用于测定盐酸水苏碱HPLC-CAD方法,专属性强、重复性好、灵敏度高,为复方益母草胶囊及相关制剂中盐酸水苏碱的质量检测提供可行方案.

    参考文献 (9)

返回顶部

目录

/

返回文章
返回