-
随着经济的快速增长和人口的增多,含有大量重金属的工业废水和生活污水排放到水环境中. 这些重金属通过沉淀和絮凝作用沉积到河流、湖泊和海洋底部,从而使沉积物成为重金属的储存库[1-2]. 重金属具有易积累,难降解,代谢抗性、生物毒性放大等特点[3-4],产生毒性的同时会改变水生生态系统营养物质的组成、结构和功能[5]. 一些重金属(如汞、镉和砷)容易在食物链中积累,对人类构成潜在的健康风险[6-8].
位于青岛境内的胶州湾(JZB)是一个典型的半封闭式沿海海湾. 墨水河、大沽河、洋河和李村河作为4条主要的入湾河流,不仅承担着城区景观娱乐的功能,更是运送工业废水,生活污水的通道. 近年来JZB的重金属水平有所上升[9-11]. 然而,研究范围主要集中在河口、潮间带及深水区[10, 12-14],缺乏对周围城市内入湾河流的研究,限制了对该地区重金属污染水平、特征、来源及生态风险的了解.
基于此,在胶州湾区4条主要入湾河流(大沽河、墨水河、洋河、李村河)采集了51个站位表层沉积物样品,测定了As、Cd、Cr、Cu、Ni、Pb、Hg和Zn等8种重金属元素含量,利用地理信息系统(GIS)绘制4条河流重金属的空间分布直方柱图;使用地累积指数、污染负荷指数、潜在生态风险指数法对重金属污染进行评估;基于以上分析,运用正定矩阵因子分析模型(PMF)解析了沉积物中重金属的来源和各来源的贡献率,为胶州湾区的重金属污染防治和周边城市经济可持续发展提供一定的科学依据.
基于PMF模型的胶州湾地区主要河流表层沉积物中重金属污染特征及来源解析
Analysis of heavy metal pollution characteristics and sources in surface sediments of major rivers in the Jiaozhou Bay area based on the positive matrix factorization model
-
摘要: 为研究胶州湾地区主要河流表层沉积物重金属污染特征、污染来源及生态风险,2021年6月采集了青岛市4条主要河流中的51个表层沉积物样品,利用地累积指数、污染负荷指数和潜在生态风险指数法评估了重金属污染水平及其生态风险,并采用正定矩阵因子分析模型(PMF)解析了重金属污染来源及其贡献率. 结果表明,胶州湾区主要河流表层沉积物中As、Cd、Cr、Cu、Ni、Pb、Hg和Zn中值浓度分别为:5.71、0.27、124.27、26.61、24.45、12.27、0.039、91.80 mg∙kg-1. 其中Cd、Cr、Cu、Hg和Zn的中值浓度均高于背景值,有一定的富集;地累积指数(Igeo)法评价结果表明,8种金属的Igeo依次为Cd(1.21) >Hg(0.79) >Cr(0.31) >Zn(0.18) >Cu(-0.21) >Ni(-0.65)>Pb(-1.00) >As(-1.34);其中Cd的污染程度最高,Hg、Cr、Zn为轻度污染,沉积物中Cu、Ni、Pb、As的Igeo<0,表明这4种金属可视为无污染. 污染负荷指数(PLI)结果显示,4条河流采样点超标率依次为:李村河(100%)>墨水河(85.7%)>大沽河(66.7%)>洋河(46.1%),表明胶州湾东部流域污染较为严重;Hg和Cd对风险指数(RI)的贡献率最高,分别为61.8%和27.7%,Hg对水生生物构成最大的潜在生态危害,其次是Cd. 经PMF模型源解析可知本研究区域河流表层沉积物中重金属的主要来源依次是:自然母质源(40.01%)>农业养殖源(27.88%)>工业活动源(17.01%)>大气沉降源(15.10%).Abstract: To study the pollution characteristics, sources, and ecological risk of heavy metals in surface sediments of major rivers in the Jiaozhou Bay area, Qingdao, 51 samples were collected in June 2021. The level of heavy metal pollution and the ecological risk were assessed using geo-accumulation index, pollution load index and potential ecological risk index methods. The positive matrix factorization (PMF) model was employed to analyze the sources and their contributions to heavy metals. The results showed that the median concentrations of As, Cd, Cr, Cu, Ni, Pb, Hg and Zn in the surface sediments of the rivers were 5.71, 0.27, 124.27, 26.61, 24.45, 12.27, 0.039 and 91.80 mg∙kg-1, respectively. The median concentrations of Cd, Cr, Cu, Ag and Zn were higher than the background values with enrichment. The geo-accumulation index (Igeo) of the 8 metals showed a decreasing order of Cd (1.21) > Hg (0.79) > Cr (0.31) > Zn (0.18) > Cu (-0.21) > Ni (-0.65) > Pb (-1.00) > As (-1.34). Among them, the contamination degree of Cd is the highest, with Hg, Cr and Zn being lightly contaminated. The negative values of Igeo for Cu, Ni, Pb and As in the sediment indicate that these four metals can be regarded as non-polluted. The results of pollution load index (PLI) showed that the standard-exceeding rates of the four rivers were in the order of Licun River (100%) > Moshui River (85.7%) > Dagu River (66.7%) > Yanghe River (46.1%), The PMF indicating the most serious pollution in the eastern watersheds of Jiaozhou Bay area. The highest contribution to risk index (RI) was observed for Hg and Cd with RIs of 61.8% and 27.7%, respectively. Mercury posed the highest potential ecological hazard to aquatic organisms, followed by Cd. Four major sources of heavy metals in the surface sediments of the rivers in the study area were identified, in the order of natural (40.01%)>farming and aquaculture (27.88%)>industrial activity (17.01%)>atmospheric deposition (15.10%).
-
Key words:
- heavy metals /
- source analysis /
- river sediments /
- Jiaozhou Bay area /
- PMF.
-
元素 Element As Cd Cr Cu Ni Pb Hg Zn 含量 Concentration 9.30 0.08 66.00 24.00 25.80 25.80 0.0198 63.50 表 2 地累积指数污染等级
Table 2. Degree of heavy metal pollution in sediments according to geo-accumulation index
Igeo <0 0—1 1—2 2—3 3—4 4—5 >5 级别 Level 1 2 3 4 5 6 7 污染程度 Degree 无污染 轻污染 中度污染 中-强污染 强污染 强-极强污染 极强污染 PLI ≤1 1—2 2—3 ≥3 污染程度 Degree 无污染 中度污染 强污染 极强污染 表 4 潜在生态风险评估指标与等级划分[26]
Table 4. 4 Potential ecological risk assessment indicators and classification[26]
${{E} }_{\text{r} }^{\text{i} }$ RI 潜在生态风险程度分级
Potential ecological risk level classification<40 <150 低风险 40—80 150—300 中风险 80—160 300—600 较高风险 160—320 >600 高风险 >320 — 极高风险 表 5 胶州湾区主要河流表层沉积物中重金属含量(mg∙kg−1)
Table 5. Heavy metal content in surface sediments of major rivers in the Jiaozhou Bay area(mg∙kg−1)
采样河流
Sampling river元素
ElementAs Cd Cr Cu Ni Pb Hg Zn
大沽河
Dagu river最大值 Max 9.38 0.32 192.68 49.70 28.40 17.39 0.067 102.24 最小值 Min 3.17 0.12 54.65 12.16 15.75 8.86 0.011 54.73 中间值 Mid 6.08 0.23 99.06 21.00 21.73 13.59 0.027 80.58 标准差 SD 1.99 0.06 37.46 9.67 4.51 2.65 0.015 14.11 平均值Mean 6.08 0.23 109.76 23.16 21.63 13.43 0.030 78.70 变异系数 CV 0.33 0.24 0.34 0.42 0.21 0.20 0.18 0.52
墨水河
Moshui river最大值Max 12.28 0.58 341.98 210.52 46.04 37.28 0.394 628.48 最小值Min 1.71 0.14 47.14 21.08 16.80 11.77 0.003 55.20 中间值Mid 6.66 0.36 142.71 32.36 30.42 26.86 0.087 124.04 平均值Mean 6.65 0.35 147.85 71.66 30.62 24.78 0.133 183.43 标准差SD 2.89 0.13 67.12 60.89 8.49 7.35 0.125 157.98 变异系数CV 0.43 0.36 0.45 0.85 0.28 0.30 0.86 0.94
洋河
Yanghe river最大值Max 9.10 0.40 283.85 30.97 47.66 22.87 0.50 450.48 最小值Min 2.56 0.10 62.58 12.07 14.48 7.49 0.008 33.44 中间值Mid 4.44 0.23 124.27 21.36 21.74 11.86 0.013 51.69 平均值Mean 5.38 0.22 134.73 21.38 23.40 12.54 0.053 93.78 标准差SD 1.99 0.08 55.39 4.98 8.20 3.75 0.129 108.84 变异系数CV 0.37 0.38 0.41 0.23 0.35 0.30 2.45 1.16
李村河
Licun river最大值Max 8.37 0.84 206.04 95.80 33.99 54.55 1.205 300.58 最小值Min 3.09 0.31 70.29 18.94 18.00 19.00 0.018 98.17 中间值Mid 5.23 0.54 127.03 36.39 26.98 40.29 0.172 213.13 平均值Mean 5.53 0.53 132.46 45.22 26.81 39.45 0.342 200.15 标准差SD 1.34 0.15 33.70 25.23 4.75 9.49 0.38 60.27 变异系数CV 0.24 0.29 0.25 0.56 0.18 0.24 1.10 0.30 胶州湾主要河流
major rivers in the Jiaozhou Bay area最大值Max 12.28 0.84 341.98 210.52 47.66 54.55 1.205 628.48 最小值Min 1.71 0.10 47.14 12.07 14.48 7.49 0.003 33.44 中间值Mid 5.71 0.27 124.27 26.61 24.45 12.27 0.039 91.80 平均值Mean 5.93 0.33 131.93 41.21 25.77 22.44 0.138 139.87 标准差SD 2.22 0.17 52.95 40.39 7.69 12.45 0.238 116.49 变异系数CV 0.37 0.50 0.40 0.98 0.30 0.55 1.73 0.83 土壤背景值 9.30 0.08 66.00 24.00 25.80 25.80 0.0198 63.50 表 6 与其他区域沉积物中重金属含量对比(mg∙kg−1)
Table 6. Comparison of heavy metal content in sediments with other areas(mg∙kg−1)
研究区域
Study area时间
TimeAs Cd Cr Cu Ni Pb Hg Zn 文献
Literature sources胶州湾海域Jiaozhou Bay 2019 8.54 0.10 62.94 30.15 — 30.58 0.110 85.50 [10] 胶州湾潮间带Intertidal Jiaozhou Bay 2016 9.20 0.42 69.9 38.8 — 55.2 — 107.4 [9] 小清河流域Xiaoqing River 2016 8.38 0.399 88.1 20.00 17.875 7.04 0.118 — [36] 长江中游The middle reaches of the Yangtze River 2020 5.30 0.100 45.60 19.20 — 17.30 0.134 67.60 [37] 宝鸡市河流Baoji River 2020 30.11 1.45 57.57 56.56 31.80 15.70 — 493.34 [22] 北京市特征河流Typical River in Beijing 2020 7.07 0.35 34.79 27.96 20.93 13.22 0.75 127.28 [38] 本研究This study 2020 5.93 0.17 131.93 41.21 25.77 22.44 0.138 139.87 — 表 7 河流表层沉积物重金属之间相关性分析
Table 7. Correlation analysis of heavy metals in surface sediments of river
元素
ElementsAs Cd Cr Cu Ni Pb Zn Hg As 1 Cd 0.299* 1 Cr −0.547** −0.029 1 Cu 0.269 0.475** 0.019 1 Ni 0.576** 0.548** −0.133 0.685** 1 Pb 0.206 0.919** −0.002 0.478** 0.495** 1 Zn 0.210 0.608** −0.018 0.798** 0.639** 0.590** 1 Hg 0.084 0.747** −0.014 0.377** 0.245 0.659** 0.581** 1 注:*表示在0.05级别(双尾)相关性显著,**表示在0.01级别(双尾)相关性显著
* Significance at the 0.05 probability level, ** Significance at the 0.01 probability level. -
[1] MALVANDI H. Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran [J]. Marine Pollution Bulletin, 2017, 117(1/2): 547-553. [2] MORINA A, MORINA F, DJIKANOVIĆ V, et al. Common barbel (Barbus barbus) as a bioindicator of surface river sediment pollution with Cu and Zn in three rivers of the Danube River Basin in Serbia [J]. Environmental Science and Pollution Research, 2016, 23(7): 6723-6734. doi: 10.1007/s11356-015-5901-9 [3] ISLAM M S, HOSSAIN M B, MATIN A, et al. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River Estuary, Bangladesh [J]. Chemosphere, 2018, 202: 25-32. doi: 10.1016/j.chemosphere.2018.03.077 [4] ZHAO G M, YE S Y, YUAN H M, et al. Surface sediment properties and heavy metal contamination assessment in river sediments of the Pearl River Delta, China [J]. Marine Pollution Bulletin, 2018, 136: 300-308. doi: 10.1016/j.marpolbul.2018.09.035 [5] ZAHRA A, HASHMI M Z, MALIK R N, et al. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan [J]. Science of the Total Environment, 2014, 470/471: 925-933. doi: 10.1016/j.scitotenv.2013.10.017 [6] WEI R C, GE F, HUANG S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China [J]. Chemosphere, 2011, 82(10): 1408-1414. doi: 10.1016/j.chemosphere.2010.11.067 [7] MORILLO J, USERO J, GRACIA I. Potential mobility of metals in polluted coastal sediments in two bays of southern Spain [J]. Journal of Coastal Research, 2007, 232: 352-361. doi: 10.2112/04-0246.1 [8] CHAKRABORTY P, RAGHUNADH BABU P V, VUDAMALA K, et al. Mercury speciation in coastal sediments from the central east coast of India by modified BCR method [J]. Marine Pollution Bulletin, 2014, 81(1): 282-288. doi: 10.1016/j.marpolbul.2013.12.054 [9] XU F J, QIU L W, CAO Y C, et al. Trace metals in the surface sediments of the intertidal Jiaozhou Bay, China: Sources and contamination assessment [J]. Marine Pollution Bulletin, 2016, 104(1/2): 371-378. [10] 胡睿, 窦衍光, 邹亮, 等. 胶州湾海域表层沉积物重金属元素分布特征与风险评价 [J]. 海洋地质前沿, 2021, 37(11): 11-21. doi: 10.16028/j.1009-2722.2021.104 HU R, DOU Y G, ZOU L, et al. Distribution pattern and risk assessment for heavy metals in the surface sediments of Jiaozhou Bay [J]. Marine Geology Frontiers, 2021, 37(11): 11-21(in Chinese). doi: 10.16028/j.1009-2722.2021.104
[11] DAI J C, SONG J M, LI X G, et al. Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay, North China [J]. Environmental Pollution, 2007, 145(3): 656-667. doi: 10.1016/j.envpol.2006.10.005 [12] YE S Y, LAWS E A, DING X G, et al. Trace metals in porewater of surface sediments and their bioavailability in Jiaozhou Bay, Qingdao, China [J]. Environmental Earth Sciences, 2011, 64(6): 1641-1646. doi: 10.1007/s12665-010-0719-8 [13] DENG B, ZHANG J, ZHANG G R, et al. Enhanced anthropogenic heavy metal dispersal from tidal disturbance in the Jiaozhou Bay, North China [J]. Environmental Monitoring and Assessment, 2010, 161(1/2/3/4): 349-358. [14] 肖彩玲, 陈路锋, 李雁宾. 胶州湾沉积物重金属分布特征及生态风险评价 [J]. 中国科技论文, 2017, 12(9): 1079-1086. doi: 10.3969/j.issn.2095-2783.2017.09.019 XIAO C L, CHEN L F, LI Y B. Distribution characteristics and potential risk assessment of heavy metals in the sediment of Jiaozhou Bay [J]. China Sciencepaper, 2017, 12(9): 1079-1086(in Chinese). doi: 10.3969/j.issn.2095-2783.2017.09.019
[15] CHEN W, WANG W M. Middle-Late Holocene vegetation history and environment changes revealed by pollen analysis of a core at Qingdao of Shandong Province, East China [J]. Quaternary International, 2012, 254: 68-72. doi: 10.1016/j.quaint.2011.04.005 [16] 青岛市统计局. 青岛统计年鉴[R]. 2021. QINGDAO MUNICIPAL BUREAU OF STATISTICS. Qingdao statistical yearbook[R]. 2021.
[17] MARTIN T D, CREED J T, CA B. USEPA-Method 200.2-1994 Sample preparation procedure for spectrochemical determination of total recoverable elements[S]. [18] MARTIN T D, CREED J T, CA B. 200.7-1994 Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry[S]. [19] ZHENG G X, SONG J M, SUN Y M, et al. Characteristics of nitrogen forms in the surface sediments of southwestern Nansha Trough, South China Sea [J]. Chinese Journal of Oceanology and Limnology, 2008, 26(3): 280-288. doi: 10.1007/s00343-008-0280-4 [20] ZHAO H R, XIA B C, FAN C, et al. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China [J]. Science of the Total Environment, 2012, 417/418: 45-54. doi: 10.1016/j.scitotenv.2011.12.047 [21] LI F X, YU X, LV J M, et al. Assessment of heavy metal pollution in surface sediments of the Chishui River Basin, China [J]. PLoS One, 2022, 17(2): e0260901. doi: 10.1371/journal.pone.0260901 [22] 耿雅妮, 杨宁宁, 戴恩华, 等. 宝鸡市河流表层沉积物重金属空间分布、风险评价及源解析 [J]. 干旱区资源与环境, 2020, 34(10): 102-110. doi: 10.13448/j.cnki.jalre.2020.275 GENG Y N, YANG N N, DAI E H, et al. Spatial distribution, ecological risk and source of heavy metals in surface sediments of Baoji River [J]. Journal of Arid Land Resources and Environment, 2020, 34(10): 102-110(in Chinese). doi: 10.13448/j.cnki.jalre.2020.275
[23] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. China National Environmental Monitoring Centre. Background value of soil elements in China[M]. Beijing: China Environment Science Press, 1990(in Chinese).
[24] TOMLINSON D L, WILSON J G, HARRIS C R, et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index [J]. Helgolä nder Meeresuntersuchungen, 1980, 33(1/2/3/4): 566-575. [25] 徐双贵, 杨莎, 秦西伟, 等. 湟水河流域西宁段河流表层沉积物重金属空间分布及生态风险评估 [J]. 地球与环境, 2021, 49(5): 561-569. doi: 10.14050/j.cnki.1672-9250.2021.49.074 XU S G, YANG S, QIN X W, et al. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from Xining section of the Huangshui River Basin [J]. Earth and Environment, 2021, 49(5): 561-569(in Chinese). doi: 10.14050/j.cnki.1672-9250.2021.49.074
[26] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [27] 赵晓亮, 李响, 卢洪斌, 等. 东江湖表层沉积物重金属污染特征与潜在生态风险评价 [J]. 环境科学, 2022, 43(6): 3048-3057. ZHAO X L, LI X, LU H B, et al. Analysis of heavy metal pollution characteristics and potential ecological risks of surface sediments in Dongjiang Lake [J]. Environmental Science, 2022, 43(6): 3048-3057(in Chinese).
[28] XIAO H, SHAHAB A, XI B D, et al. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China [J]. Environmental Pollution, 2021, 269: 116189. doi: 10.1016/j.envpol.2020.116189 [29] PAATERO P. Least squares formulation of robust non-negative factor analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. doi: 10.1016/S0169-7439(96)00044-5 [30] USEPA. Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry[Z]. U. S. Environment Protection Agency (Washington DC), 2014. [31] 刘文, 徐士进, 杨杰东, 等. 金沙江河流悬浮物与沉积物的矿物学特征及其表生地球化学意义 [J]. 矿物岩石地球化学通报, 2007, 26(2): 164-169. doi: 10.3969/j.issn.1007-2802.2007.02.012 LIU W, XU S J, YANG J D, et al. Mineralogical characteristics of suspended matters and sediments in the Jinshajiang River and their superficial geochemical significance [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(2): 164-169(in Chinese). doi: 10.3969/j.issn.1007-2802.2007.02.012
[32] PHIL-EZE P. Variability of soil properties related to vegetation cover in a tropical rainforest landscape [J]. Journal of Geography and Regional Planning, 2010, 3(7): 177-184. [33] 林承奇, 陈枫桦, 胡恭任, 等. 基于PMF模型解析九龙江河口表层沉积物重金属来源 [J]. 地球与环境, 2020, 48(4): 443-451. doi: 10.14050/j.cnki.1672-9250.2020.48.062 LIN C Q, CHEN F H, HU G R, et al. Source apportionment of heavy metals in surface sediments of the Jiulong River Estuary based on positive matrix factorization [J]. Earth and Environment, 2020, 48(4): 443-451(in Chinese). doi: 10.14050/j.cnki.1672-9250.2020.48.062
[34] 王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响 [J]. 植物营养与肥料学报, 2014, 20(2): 466-480. doi: 10.11674/zwyf.2014.0224 WANG M, LI S T. Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 466-480(in Chinese). doi: 10.11674/zwyf.2014.0224
[35] 刘钦普, 林振山, 周亮. 山东省化肥使用时空分异及潜在环境风险评价 [J]. 农业工程学报, 2015, 31(7): 208-214. LIU Q P, LIN Z S, ZHOU L. Spatio-temporal differentiation and environmental risk assessment of fertilization in Shandong Province, China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 208-214(in Chinese).
[36] 王旭. 小清河沉积物重金属生态风险评价及管理对策研究[D]. 济南: 山东大学, 2018. WANG X. The ecological risk assessment and management suggestion on heavy metals in sediment of Xiaoqing River[D]. Jinan: Shandong University, 2018(in Chinese).
[37] 郭杰, 王珂, 于琪, 等. 长江中游近岸表层沉积物重金属污染特征分析及风险评估 [J]. 环境科学学报, 2021, 41(11): 4625-4636. doi: 10.13671/j.hjkxxb.2021.0317 GUO J, WANG K, YU Q, et al. Pollution characteristics of the heavy metals and their potential ecological risk assessment in nearshore sediments of the middle reaches of the Yangtze River [J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4625-4636(in Chinese). doi: 10.13671/j.hjkxxb.2021.0317
[38] 胡明, 薛娇, 严玉林, 等. 北京市特征河流沉积物重金属污染评价与来源解析 [J]. 中国给水排水, 2021, 37(23): 73-81. doi: 10.19853/j.zgjsps.1000-4602.2021.23.013 HU M, XUE J, YAN Y L, et al. Assessment and trace back to source of heavy metal pollution in typical river sediments in Beijing [J]. China Water & Wastewater, 2021, 37(23): 73-81(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2021.23.013
[39] 马玉, 李团结, 高全洲, 等. 珠江口沉积物重金属背景值及其污染研究 [J]. 环境科学学报, 2014, 34(3): 712-719. doi: 10.13671/j.hjkxxb.2014.0123 MA Y, LI T J, GAO Q Z, et al. Background values and contamination of heavy metals in sediments from the Pearl River Estuary [J]. Acta Scientiae Circumstantiae, 2014, 34(3): 712-719(in Chinese). doi: 10.13671/j.hjkxxb.2014.0123
[40] 孙阳昭, 陈扬, 蓝虹, 等. 中国汞污染的来源、成因及控制技术路径分析 [J]. 环境化学, 2013, 32(6): 937-942. doi: 10.7524/j.issn.0254-6108.2013.06.003 SUN Y Z, CHEN Y, LAN H, et al. Study on pollution sources, cause of mercury pollution and its control technical roadmap in China [J]. Environmental Chemistry, 2013, 32(6): 937-942(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.06.003
[41] ZHANG J Z, ZHOU X H, WANG Z, et al. Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment [J]. Science of the Total Environment, 2018, 621: 558-577. doi: 10.1016/j.scitotenv.2017.11.292 [42] FANG X H, PENG B, WANG X, et al. Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan Province, China [J]. The Science of the Total Environment, 2019, 689: 557-570. doi: 10.1016/j.scitotenv.2019.06.330 [43] DAI L J, WANG L Q, LI L F, et al. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China [J]. The Science of the Total Environment, 2018, 621: 1433-1444. doi: 10.1016/j.scitotenv.2017.10.085 [44] NGUYEN B T, DO D D, NGUYEN T X, et al. Seasonal, spatial variation, and pollution sources of heavy metals in the sediment of the Saigon River, Vietnam [J]. Environmental Pollution, 2020, 256: 113412. doi: 10.1016/j.envpol.2019.113412 [45] 戴纪翠, 宋金明, 李学刚, 等. 人类活动影响下的胶州湾近百年来环境演变的沉积记录 [J]. 地质学报, 2006, 80(11): 1770-1778. doi: 10.3321/j.issn:0001-5717.2006.11.017 DAI J C, SONG J M, LI X G, et al. Human impacts on environmental changes in the last one hundred years of the Jiaozhou Bay [J]. Acta Geologica Sinica, 2006, 80(11): 1770-1778(in Chinese). doi: 10.3321/j.issn:0001-5717.2006.11.017
[46] 夏文建, 张丽芳, 刘增兵, 等. 长期施用化肥和有机肥对稻田土壤重金属及其有效性的影响 [J]. 环境科学, 2021, 42(5): 2469-2479. doi: 10.13227/j.hjkx.202008094 XIA W J, ZHANG L F, LIU Z B, et al. Effects of long-term application of chemical fertilizers and organic fertilizers on heavy metals and their availability in reddish paddy soil [J]. Environmental Science, 2021, 42(5): 2469-2479(in Chinese). doi: 10.13227/j.hjkx.202008094
[47] JIN Y L, O'CONNOR D, OK Y S, et al. Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis [J]. Environment International, 2019, 124: 320-328. doi: 10.1016/j.envint.2019.01.024 [48] GAN Y D, HUANG X M, LI S S, et al. Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta [J]. Journal of Cleaner Production, 2019, 221: 98-107. doi: 10.1016/j.jclepro.2019.02.157 [49] LV J S. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils [J]. Environmental Pollution, 2019, 244: 72-83. doi: 10.1016/j.envpol.2018.09.147 [50] OZCAN H K, DEMIR G, NEMLIOGLU S. Heavy metal concentrations of atmospheric ambient deposition dust in Istanbul-Bosphorus Bridge tollhouses [J]. J Residuals Sci Technol, 2007, 4(1): 55-59. [51] HU R, ZHOU X L, WANG Y N, et al. Survey of atmospheric heavy metal deposition in Suqian using moss contamination [J]. Human and Ecological Risk Assessment:an International Journal, 2020, 26(7): 1795-1809. doi: 10.1080/10807039.2019.1609347 [52] LI S Q, ZHANG G L, YANG J L, et al. Multi-source characteristics of atmospheric deposition in Nanjing, China, as controlled by east Asia monsoons and urban activities [J]. Pedosphere, 2016, 26(3): 374-385. doi: 10.1016/S1002-0160(15)60050-9